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Editorial: Celebrating 60 Years of Fuzzy Sets

Welcome to this special volume, a unique collection of insights and reflections from the global fuzzy set community. As
we gather for Fuzz-IEEE 2025, we’re not just attending a conference; we’re commemorating 60 years since the inception of
fuzzy sets, a revolutionary concept that forever changed how we model and understand uncertainty.

This volume is a testament to the enduring impact of Lotfi Zadeh’s foundational work. It serves as a dynamic forum, inviting
voices from across the globe to share their perspectives on the journey of fuzzy sets. We asked participants to reflect on what
they consider the most significant recent contributions in fuzzy systems over the past decade, to identify the most pressing
challenges looming for the future, and to highlight the truly pivotal contributions from these past six decades that hold personal
significance.

The response has been remarkable, offering a rich tapestry of viewpoints that span historical milestones, cutting-edge
advancements, and visionary outlooks. The diversity of contributions underscores the pervasive influence of fuzzy sets. Equally
compelling are the thoughtful discussions on future challenges.

Several contributions have been devoted to recall the history of fuzzy sets, its evolution, achievements and conflicts. In
some cases, it is the authors’ personal history in the field that has been the main focus of the work. These narratives, whether
historical or personal, are crucial for understanding the profound and global influence that fuzzy sets have exerted on the
advancement of computational intelligence and the resolution of complex problems across diverse disciplines.

Beyond the core principles, another significant set of contributions in this volume delves into the historical evolution,
current trends, and inherent challenges within specific topics and application areas of fuzzy sets. Several of these stand out as
prominent areas of current research and development. Key application domains include Fuzzy Control, Healthcare, Biomedical
Engineering, and Computational Social Sciences, among others.

The authors also highlight crucial research topics and tools that are shaping the future of the field. These encompass the
burgeoning areas of Generative AI and Large Language Models (LLMs), Semantic Web Technologies, Information Fusion,
Human-Centric AI and Explainable AI (XAI). Methodologies such as Genetic and Evolutionary Fuzzy Systems and the
application of fuzzy sets in established paradigms like Machine Learning and Data Mining are also examined. Fundamental
theoretical constructs like Possibility Theory, Representations by Levels, and Aggregation Functions are revisited, showcasing
the ongoing intellectual dynamism driving fuzzy set theory forward.

To conclude, this compilation is more than just a historical record; it’s a living dialogue. It represents the collective wisdom
and foresight of a community dedicated to pushing the boundaries of intelligence and decision-making under uncertainty. We
believe this open-access booklet will not only be a valuable resource for researchers and practitioners but also an inspiration
for the next generation of innovators.

We extend our sincere gratitude to all who contributed their valuable insights, making this volume a vibrant celebration
of fuzzy sets’ rich past, dynamic present, and promising future. Your collective voices provide a compelling roadmap for the
exciting journey ahead.

July 2025

Jesús Chamorro and Daniel Sánchez, editors
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I. INTRODUCTION

Fuzzy sets were introduced 60 years ago by Lotfi Zadeh and
they have undergone spectacular growth, essentially because
of a number of large-scale industrial applications. To take
the example of France, D. Willaeys and N. Malvache [47]
continued E.H. Mamdani’s seminal work [34] on fuzzy control
in 1977 and they proposed to use it in a case study. They were
not followed by industry and they had rapidly to stop their
work on the topic. It was only after the successful utilization
of fuzzy control by Japanese companies at the end of the
80s that French companies discovered the potential power of
fuzzy systems and decided to use them in all possible fields at
the beginning of the 90s. In the meantime, various real-world
applications of fuzzy set theory were developed all over the
world, Medical applications [2], and decision-making were
among the most popular domains, and this is why it could
grow and reach the Japanese engineers and researchers.

II. RECENT IMPACT OF FUZZY SYSTEMS

The past ten years have seen the emergence and supremacy
of deep learning, which has focused on all types of applica-
tions dealing with data science. Therefore, I think that we can
consider that the main impact of fuzzy methods in these recent
years was mainly related to the utilization of the capacity
of fuzzy sets to provide interfaces between numerical and
linguistic values of variables, providing interesting ways of
being easily understood by users in the framework of big data
analysis.

The development of XAI, after the DARPA incentive in
2016 [14], put the light on a wide field in which the long-
standing research on the expressiveness of fuzzy set-based
methods could be developed and used. The natural capacity
of a user to understand a fuzzy model, to use it, to understand
how the outcomes are obtained, and finally to trust it, has
been pointed out well before the movement in favour of
XAI [6], [11], [12], [28]. The balance between complexity,
accuracy, understandability and semantic interpretability is at
the core of all learning methods dealing with big data [10],
[16]. Multi-objective optimization strategies to maximize the

interpretability while looking for high accuracy have been
presented [33]. Experimental approaches to interpretability of
fuzzy systems have been proposed as early as 2009 [3].

Subjectivity is an important component of the interactions
between a system and its users, and its management by
means of fuzzy sets has been studied for years [8], [35]. It
now includes the subjective perception of explainability [43],
which opens the door to a fruitful utilization of a fuzzy set-
based knowledge representation. Explainability, understand-
ability, expressiveness, and interpretability are various facets
of the acceptability by the user of decisions made by artificial
intelligence-based systems and it is clear that fuzzy methods
provide an easy way to express and to handle them.

Another field of big data analysis where fuzzy sets are
efficient is the summarization of data. The method has been
introduced many years ago [4], [9], [23], [24], [48], but it
found its full power with the capacity to cope with complexity
and to provide simple scalable tools not requiring either
parameters or hypothesis [25], [37], [44].

An important aspect of the current flow of news and
information is the veracity of data, their reliability and the
evaluation of uncertainty about the validity of information.
Solutions have already been proposed by means of fuzzy and
possibilistic rating methods and possibilistic logic [30], [31].

III. FUZZY SYSTEMS IN THE FUTURE

Given the overwhelming development of large language
models and other automatic systems based on neural networks,
deep learning, transformers and other methods to manage big
data and to interact with users in a very natural way, it seems
that the future of fuzzy systems lies on a collaboration with
them. Hybrid systems have been used for a long time [38].
They have obviously taken various forms over the years and
they adapt to the environment and the current streams. They
can bring their capacity to manage subjective information
and to consider gradual categories. Their ability to handle
complexity makes them good candidates to deal with big
data summarization, in particular in the case of temporal data.
The management of subjective information is also promising.
Emotional computing should incorporate more elements of
fuzzy logic in the future. Robotics will certainly find new
powerful utilisations of fuzzy logic.
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IV. MAIN CONTRIBUTIONS OF FUZZY SET-BASED
METHODS

Applications of fuzzy-set based methods have been so
diverse that it is difficult to rank them. The major impact of
fuzzy methods has been observed in industry and large-scale
real-world applications. Fuzzy control has been important in
the visibility of the power of fuzzy methods, but other aspects
such as image processing have also been noteworthy.

The utilization of fuzzy systems by the NASA was for
instance a major advancement. Patents were registered in
image processing to track unfamiliar objects in videos and
films or to detect debris during launch [45]. Fuzzy methods
were used in autonomous orbital operations to cope with
imprecise measurements from sensors [29] or for the docking
of two geostationary satellites [39]. Many other utilizations
have been described by NASA.

The most visible industrial application was probably the
automatic subway train operation system based on predictive
fuzzy control in the city of Sendai (Japan) [40]. This successful
large-scale utilization of fuzzy control decided other Japanese
companies to use fuzzy systems to solve their problems. We
can cite for instance the use of fuzzy control for the design
and implementation of a group of elevators [27] or the control
of the automatic transmission shift schedule in cars by Nissan
[49]. A wide field emerged at the same time with the use of
fuzzy methods in robotics, for instance robots playing ping-
pong game [18], interacting physically with humans [22] or
through emotion understanding [13], for instance.

A little later, we cannot forget the development of an
unmanned helicopter by M. Sugeno and his colleagues [46],
with a semi-autonomous flight achieved on the basis of macro-
scopic flight commands given orally from the ground, which
proved that fuzzy control can be used to construct safe and
complex systems. Successful applications in Japan paved the
way for other real-world applications around the world, for
instance the fuzzy control of a nuclear system [21], [42]. To
take the example of France, industrial applications started at
the beginning of the 90s, in all directions, with regard to
car makers [36], traffic routing in telephone networks [26],
medical images [5], [41], air traffic flow management [50],
[51], automatic subway traffic control [17] in particular.

It is worth noting that fuzzy logic was applied to all
possible fieds [7], [19]. It is impossible to give an exhaustive
list of these fields. Home appliances were the most popular
applications, with air-conditioning systems, cameras, washing
machines, ovens, blood pressure monitors, etc. Components
of industrial plants were also handled with the help of fuzzy
logic, for instance industrial furnaces, steel mills or semicon-
ductor manufacturing. [15]. Fuzzy systems were also used
in a military environment for the analysis of political crisis,
air mission planning, the identification of on-site military
activities for instance.

It was also used in the recognition or simulation of emotions
in various environments: for robots, on social media or for
business intelligence. Fuzzy logic was successfully used to

process physiological signals for video game manufacturers
[32], for brain-computer interfaces [1] for instance.

A wide range of applications concerns medical diagnosis,
including many on the basis of image processing.

V. CONCLUSION

The acceptance of this new knowledge representation by
users has been difficult when it emerged from the brain of a
specialist of control theory, Lotfi Zadeh. During years, there
was an opposition of experts in existing fields: probability
theory, control theory, classical logic, linguistics. All of them
felt that their own theory was sufficient to solve all problems
in the world and they did not need a softened version of what
they knew. It is only because applications started progressively
to appear and proved to be successful that the acceptance of
this different theory began to spread.

The importance of theoretical works which started very
early everywhere in the world was of course a fundamen-
tal component of the success of fuzzy set theory. Without
important rigorous basis, no applications would have been
possible. But it is only thanks to real-world applications that
the visibility of its potential increased. The first applications
to medical diagnosis, economy or decision-making were inter-
esting, but it is really through fuzzy control that a wide range
of utilisations became possible. After innovative efforts from
Japanese companies and academics working together, more
companies were convinced of the power of these methods
in Japan, which persuaded companies around the world to
try these revolutionary techniques. It was very trendy to use
”fuzzy logic”, as was called the use of fuzzy set-based methods
from this time. It was trendy to announce it publicly. When
the fashion declined, the utilization of fuzzy logic continued,
but it was less emphatically announced. It is now considered
as a normal component of many systems and it does not need
to be claimed, similarly to probability theory for instance.

In parallel, the explosion of new theoretical innovation
faded, and the number of fundamental developments obviously
decreased, as most of the necessary concepts have been created
and analysed. So the situation is now stable, with continued
research and development on fuzzy logic. It will be again in the
light when a surprising application will attract public attention.
We hope that the modern digital environment opens the way
to such an application.

To conclude, we want to emphasize the fact that, since
1965, fuzzy set theory has offered a new way of thinking in
mathematics. The introduction of this theory threw a spanner
in the works by proposing gradual concepts, where they were
previously, for long, considered as binary. By working on this,
developing, exploiting, or creating new mathematical tools to
handle fuzzy sets or their extensions, the community of fuzzy
researchers has contributed to open the door to a new way of
thinking. Now, in several domains, we can see the introduction
of ”fuzzy-like” thought models, which also illustrates the
contributions of this theory from a more conceptual point of
view. For instance, uncertainty is now considered in machine
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learning of a more complex nature than only aleatoric, and it
can also be epistemic [20].
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Abstract— This note describes my involvement with the 
birth of three fuzzy societies: the North American Fuzzy 
Information Processing Society (NAFIPS); the International 
Fuzzy Systems Association (IFSA); and the fuzzy component of 
the IEEE Computational Intelligence Society.  

I. HOW IT ALL BEGAN 
The idea of forming a professional society dedicated to the 
advancement of Fuzzy Sets and Systems was hatched by 
Enrique Ruspini, Madan Gupta and myself (Jim Bezdek) on 
a plane trip returning to the USA from Acapulco, Mexico in 
December, 1980. We had all given talks about fuzzy models 
at the International Congress for Systems and Cybernetics, 
and the lure of having our own forum for technical 
interchange of ideas in the field was a powerful one.  
 
Lotfi Zadeh felt our enthusiasm for this venture was 
premature. We turned to King Sun Fu, who had been very 
supportive of fuzzy sets work, and he liked the idea. Fu was 
Bill Wee’s thesis advisor. Wee wrote the first Ph.D. thesis on 
fuzzy pattern recognition just two years after Lotfi published 
his seminal paper in 1965. 
 

Wee, W.G. (1967). On Generalization of Adaptive 
Algorithms and Application of the Fuzzy Sets Concept 
to Pattern Classification. Ph.D. Dissertation, Purdue 
University, West Lafayette. 

 
King Sun Fu felt the time was right for the formation of a 
professional society, so he agreed to chair a North American 
Fuzzy Information Processing (NAFIP) working group to 
formulate a plan for it. Subsequently he agreed to be the 
founding president of NAFIPS in 1981. The founding Board 
of Directors consisted of Jim Bezdek, Enrique Ruspini, Piero 
Bonissone, Richard Tong, Lotfi Zadeh, K. S. Fu, and Ron 
Yager.  The Board did not meet physically during our first 
year of operation, but we did conduct a lot of business by 
surface mail.  We initially called this organization a group. 
We had the idea that it should be called a society, but we did 
not decide to add the "S," for "Society" until 1985, the year 
that Enrique Ruspini filed the documentation for us to 
become a tax-exempt California corporation.  

II. NAFIPS 
I volunteered to organize the first conference under the 
banner of the NAFIP group. The conference, named NAFIP-
1, was held on the campus of Utah State University (USU) in 
Logan, Utah, where I was an associate professor of 

Mathematics. The first physical meeting of the board of 
directors was held at my home in Richmond, Utah. A 
photograph of that event, Figure 1 below, was taken on the 
front porch of my house (Tanya, my 9-year daughter at the 
time, is holding King Sun Fu’s hand). At this meeting, the 
board elected me to be the second president of NAFIP. 
 

 
 

Figure 1. First NAFIP Board of Governors. Front: Left to 
Right: Paul Wang, Abe Mamdani, Tanya Bezdek, King-Sun 
Fu, Jim Yao, Lorenza Saitta. Middle: Janet Esfathiou, 
Richard Tong, Ronald Yager. Back: Marc Roubens, Philippe 
Smets, Piero Bonissone, Jim Bezdek, Enrique Ruspini, Elie 
Sanchez. 
 
There were no papers submitted or published for this 
meeting; rather, it was a meeting of talks, which at that time 
was the main point of almost all professional conferences. I 
made up a book of abstracts that summarized the talks (my 
recollection is that there were 42 of them, ±3 or so). The talks 
were presented in classrooms at USU, mostly on blackboards 
with white chalk. I recall that Ron Yager, sitting in the front 
row at one of these talks, lit up a big cigar and happily puffed 
away during the talk. How times have changed! 
 
I had the idea that this was an historic occasion, it being the 
first conference of the first professional organization 
dedicated to fuzzy sets and systems, so I made up a poster (on 
my first Apple Macintosh, with a huge 64kb of RAM!) for 
the meeting bearing the term "commemorative issue" at the 
bottom. I then had a print shop in Logan run off 75 copies of 
the poster, and each participant was given one at registration. 
I ended up with one clean unused copy of that poster, along 
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with the signature version discussed below and displayed as 
Figure 2. 
 

 
 

Figure 2. The signature poster presented to me 
 
The fashion of the day was to have a glorious banquet, so of 
course we had one at the end of the meeting. Most of us (not 
quite all of us) drove up highway 89 towards Salt Lake City 
to a restaurant (I cannot recall its name) that was situated all 
by itself, nestled in the range of mountains the locals called 
the "Wellsvilles."  
 
I had invited Brian Gaines to be our banquet speaker, but he 
had still not appeared when we left for the restaurant, so my 
anxiety about his participation in this event was palpable. Just 
as we were being served dessert, Brian arrived, having driven 
a rental car directly from the Salt Lake City airport to the 
restaurant. Brian blew into the room quite breathlessly, 
looking as disheveled as is possible for a distinguished 
practitioner of the fuzzy arts, gulped down a huge drink, went 
to the head of the room, and proceeded to give one of the 
funniest and best banquet talks you will ever hear. Here is 
Brian's account of that talk, sent to me via email on July 2, 
2017: 
 

Yes, I gave both the Logan and Kauai banquet 
speeches. How I became a banquet speaker is a 
mystery, particularly to me. The Logan one is very 
memorable. A few days prior to it I had been in 
Japan consulting with Toppan Printing and was 
scheduled to fly from Tokyo to Logan to arrive the 
day before I was due to speak. However the 
President of Toppan had to give a talk in English 
and asked me to stay an extra day and help him get 
it right. I did but then arrived at SLC the afternoon 
of the banquet, found I had missed the flight to 
Logan, hired a car and arrived just as dinner ended 
and I was due to speak. I never prepared such 

speeches—they were always extemporary, and of 
what I said I have no recollection. 

 
While Brian was talking, unbeknownst to me, the people at 
the banquet were quietly circulating a copy of the poster, 
which many of them signed (30 signatures I think), and King 
Sun Fu presented it to me at the end of the evening. It's a 
miracle that it survived even that night, because I was pretty 
well into my cups, and didn't remember much about that 
evening the next day. But it did survive, and I carried it 
around with me until I surrendered it to Rudi Seising for his 
collection of artifacts about the history of fuzzy sets. The 
copy of the poster shown here was scanned on April 11, 2010. 
I believe that Rudi has it to this day. 
 
Some of the signatures are quite faded because of the ink 
used, some I don't recognize, some I can't read, and I am not 
sure that restoration is possible. Here is a list of the signatures 
that I can read, beginning in the upper left corner with King 
Sun Fu, and (roughly) traversing the poster clockwise and 
inwards. 
 

K. S. Fu, Bob Gunderson, Colin Brown, Brian Gaines, 
Janet Esfathiou, Fred Petry, Ron Yager, Tove Jacobsen, 
Jim Yao, Piero Bonissone, Philippe Smets, Elie Sanchez, 
Don Kraft, Bill Buckles, Robin Giles, Paul Wang, 
Richard Tong, Lotfi Zadeh, Abe Mamdani, Kofi 
Dompere, Tom Whalen. 

 
I can name a few other attendees, whose signatures may or 
may not be on this poster: Mike Windham, LaDawn Haws, 
Lorenza Saitta, Rajesh Dave, Marc Roubens, Enrique 
Ruspini, Abe Kandel.  
 
Sadly, King Sun Fu died unexpectedly while I was president 
of NAFIP. To recognize his importance to fuzzy sets and to 
our fledgling society, I designed a certificate of merit, and, 
with the permission of his wife, named it the King Sun Fu 
award. I believe that this award is still given by NAFIPS, and 
still uses my original design. 
 

III. IFSA 
Many things followed from our initial foray into the world of 
professional societies. For example, the Europeans in Logan 
decided that they wanted another society not specifically tied 
to North America. And so, they formed a working group 
towards this end which met at a conference in Kauai that I 
chaired in 1984. Figure 3 shows the poster I made for this 
event  
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Figure 3. The poster I made for Kauai 

 
This working group led to the establishment of the 
International Fuzzy Systems Association (IFSA), who held 
their inaugural conference in Palma de Mallorca in 1985. 
Hans Zimmerman emerged from this group as the founding 
president of IFSA. I was subsequently elected as the second 
president of that organization.  
 

IV. THE IEEE CIS   
This is how our fuzzy gang finally penetrated the IEEE. I was 
wandering around in the exhibits hall at the 1990 Int'l. Conf. 
on Fuzzy Logic and Neural Networks in Iizuka with Bernie 
Widrow (Stanford University). I had known Bernie for many 
years as he was a very close friend of my co-thesis advisor 
(Dave Block, Cornell University).  
 
We saw many early examples of fuzzy logic being used in 
Japanese devices. There is a famous picture of Lotfi using the 
fuzzy vacuum cleaner there. We were looking at a washing 
machine that had a “smart fuzzy logic unit” to sense 
characteristics of the load and adjust the settings of the 
machine accordingly. I always thought the real cleverness in 
these devices was the sensor technology, but I never said that 
to Bernie.  
 
Bernie looked at me and said “where are the Neural Network 
washing machines?” I said “there won’t be any Bernie, they 
belong in a different neighborhood.” He said “well, I intend 
to go home and tell the IEEE that we are at (economic) war 
with Japan, and we need to get into the fuzzy logic business.” 
Not three months later, I got a call from Bob Marks, the 
president of the IEEE Neural Networks Council (NNC). He 
asked me to join the NNC and help them “get into fuzzy 
logic.” And so, I did. 
 
A number of things happened for our community in the next 
few years. In 1992, I chose a name that has stuck for the first 
IEEE International Conference on Fuzzy Systems, viz. 

“FUZZ-IEEE,” and chaired the conference, held in San 
Diego, CA. In the same year I chaired a committee to propose 
an IEEE journal devoted to fuzzy logic, and subsequently 
became the founding editor of the IEEE Transactions on 
Fuzzy Systems. And finally in 1992, I published a paper 
defining what I meant by the term “computational 
intelligence (CI).” 
 

Bezdek, J. C. (1992). On the Relationship between 
Neural Networks, Pattern Recognition, and 
Intelligence, Int. J.  Approximate Reasoning, 6(2), 85-
107. 

 
My aim was to differentiate activities based on pattern 
recognition (so-called artificial neural networks was one of 
them) from what was called artificial intelligence (AI) at that 
time. As used then, AI meant rule-based expert systems, 
whereas now, the term seems to mean “deep learning” using 
giant neural networks! 
 
In any case, I suggested to the NNC Adcom that the term CI 
would be a good one to describe our scope when we evolved 
from an IEEE council to a society. Well, that did happen, and 
then I extended my suggestion to include using it for our first 
world congress, held in Orlando in 1994. Hence the terms CIS 
and WCCI. If you are interested in this aspect of the CIS, you 
can read a complete account of it in: 
 

Bezdek, J. C. (2016). Computational Intelligence: 
What's in a Name?, IEEE SMC Magazine, 2(2), 4-14. 

 
I will finish this note by recognizing the contributions of 
several other people who made life easier for many of us in 
the early days. 
 

V. UNSUNG HEROES OF THE EARLY DAYS 
Lotfi was of course at the forefront of everything that 
happened. I have also discussed the important roles played by 
King Sun Fu and Bernie Widrow. There were several other 
people who came to our rescue when the forces of darkness 
were hurled against us. I would like to mention three of them 
here. Forces of darkness? Yes, there were any number of 
people who, for one reason or another, were quite aggressive 
and confrontational towards the fuzzy community (well, this 
hasn’t changed much since then, has it?). See these two 
papers if you find this interesting.  
 

Bezdek, J. C. (1994). Fuzziness vs. Probability - Again 
(!?), IEEE Trans. Fuzzy Systems, 2(1), 1-3. 
 
Bezdek, J. C. (2013). The parable of Zoltan, in On 
Fuzziness? A Homage to Lotfi A. Zadeh, eds, Seising, R., 
Trillas, E., Termini. S. and Moraga, C. (eds.): Springer-
Verlag (Studies in Fuzziness and Soft Computing, vol. 
298), 1, 39-46, 2013. 
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Azriel Rosenfeld (University of Maryland) wrote many 
papers about fuzzy graph theory and related topics in the early 
‘70s. He had several students working in the area. He was 
always ready to answer questions, and never wavered in his 
belief that our embryonic field was an important one. 
 
Theo Pavlidis (SUNY Stony Brook) was the editor of IEEE 
TPAMI from 1982-1986. He encouraged submissions to 
TPAMI while other journals were actively discouraging work 
in our field. He was personally responsible for chaperoning 
some of the earliest papers on fuzzy topics through the gates 
of TPAMI.  
 
Andrew Sage (University of Virginia) was instrumental in the 
creation of the IEEE SMC society, and served as editor the 
IEEE TSMC from 1972-1998. Like Theo Pavilidis, Andy had 
an open mind about our field, and gave us many opportunities 
that seemed dear to us at the time. And of course, the SMC 
was the mother ship for the eventual launch of our own IEEE 
CIS. 
 
And the rest, as they say, is history 
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The Fuzzy Moment That Changed My Life 
Jim Keller 

Electrical Engineering and Computer Science Department 
University of Missouri 
Columbia, MO USA 

Abstract—This is a short personal story of how I got involved in 
fuzzy set related research. 
 
Keywords—fuzzy pattern recognition, Jim Bezdek, Lotfi Zadeh 
 

 MY STORY  
My academic training, back in the 1970s was in mathematics.  
Both my Masters Thesis and PhD Dissertation were as pure as 
the new fallen snow. However, during my schooling I 
developed an appreciation, in fact a love, for practical 
applications of math principles through these new-fangled 
computers.  I took some courses and was very fortunate to get 
a student research position in a very interdisciplinary 
computational research program housed in the Electrical 
Engineering Department at the University of Missouri (MU). 
Computer Tomography (CT) was a hot topic in the mid-1970s, 
and my first engineering project was to build CT reconstruction 
algorithms for nondestructive testing via neutron beams at the 
Missouri University Research Reactor (MURR). Really cool 
mathematics (Radon Transforms) and super cool FORTRAN 
programs �������.  That’s where I learned about and fell in love 
with image processing.  
 
 My first “images” were numeric outputs on 132 column printer 
paper, spread out and taped together on the lab floor.  I 
segmented these images with a marking pen and we looked at 
them from a distance – now it kinda gives me a Salvador Dali 
“Abraham Lincoln” vision.  General Electric Medical Systems 
Division invested heavily in both head and full body CT 
scanners and were looking for ways to enhance the desirability 
of purchasing these expensive machines, i.e., searching for 
additional off-line applications of the CT imagery.  Our 
program at MU received a research contract from GE to 
develop a radiation therapy treatment planning system that used 
CT and nascent computer graphics to improve the estimation 
and visualization of radiation dosage to the body.  I was able to 
develop some of the early image processing techniques on 
stacks of CT slices, probably the first to display coronal and 
sagittal representations overlaid with graphical visualizations 
of radiation dose distributions.  The hook with CT was that it 
allowed us to accurately determine the contours of the body and 
internal organs/structures to correct radiation dosage 
distribution calculations.  This stand-alone CT-based Radiation 
Treatment Planning system was built on a Data General Eclipse 
minicomputer with 64K bytes of memory (yes, that a “K”, not 
M, G, or T) and a whopping 300MB disk drive that was the size 
of a washing machine and a 9 track magnetic tape drive as 
image input.  Heady stuff. 
 

I was then (and still am) enamored with pattern recognition and 
its applications.  I mean, who doesn’t love Bayes Rule and the 
perceptron algorithm?  So, what does this have to do with fuzzy 
sets?  I was a busy Assistant Professor using pattern 
recognition, image processing and computer graphics working  
 
mostly on applications involving digital medicine, food 
science, and laboratory automation.  But, I hadn’t really found 
my professional community.  I tried (maybe not hard enough) 
to integrate into the SIGGRAPH gang, but without much 
success.  Then in the early 1980s a graduate student brought in 
a book he found in the library (yes, we actually went to the 
library and wandered through the stacks looking for those new 
or hidden gems). This is the text that changed my life: 
 

James C. Bezdek, Pattern Recognition with Fuzzy 
Objective Function Algorithms, Plenum Press, New 
York, 1981. 

 
I “knew” about fuzzy sets in a “mathy” kind of way. There was 
a fellow grad student in Math who was proving theorems about 
fuzzy topology – so that was my mind set.  This book was 
different; it addressed my passion.  We spent the summer 
reading and studying, and a new world opened up for me: fuzzy 
partitions (actually defined by Enrique Ruspini), the Fuzzy C-
Means theory, algorithm and applications, and, really important 
to me at the time, ideas about using soft labels in classifier 
design.  Of course, all fuzzy set research stems from the Lotfi 
Zadeh root. I studied everything I could get my hands on.  I was 
particularly inspired by the massive 3 part series of papers by 
Lotfi on linguistic variables that helped me build solid 
mathematical foundations for much of what followed.  It’s hard 
to state just what an immense influence Lotfi Zadeh had on us 
all.  I remember early on Ron Yager saying to me something to 
the effect that Lotfi was an implicit co-author on every paper 
we wrote. 
 
However, it was the Bezdek book set me on the path to explore 
connections between fuzzy sets and pattern recognition/image 
processing.  I had a flurry of fuzzy classifier ideas in the mid to 
late1980s, all rooted in the basic message of that 1981 Bez 
book. A few of my favorites are the fuzzy K-NN, early 
explorations on fuzzy integral for pattern recognition and image 
segmentation, fuzzification of the perceptron algorithm, and 
fuzzy rule bases for object recognition.  It wasn’t until the early 
1990s that I really got into fuzzy clustering.  
 
But I’m digressing, as usual.  Back to the main story.  I sent my 
first fuzzy pattern recognition papers to the IEEE Applied 



13

Imagery Pattern Recognition Workshop (AIPR) featuring what 
we’d now call type 1 fuzzy weighted averaging.  I read a small 
monograph on using fuzzy sets to model words and to assess 
risk by doing fuzzy set based weighted averaging of the factors.  
The papers looked at simple examples of temporal and 
multispectral fusion: 
 

Keller, J., Nafarieh, A., Wootton, J., and Hobson, G., 
"Fuzzy Confidence Measures in Multitemporal 
Imagery," IEEE Applied Imagery Pattern Recognition 
Workshop, Baltimore, MD, October 1985. 

 
 

Wootton, J., Hobson, G., Luetkemeyer, K., and Keller, 
J., "The Use of Fuzzy Set Theory to Build Confidence 
Measures in Multisensor Imagery," IEEE Applied 
Imagery Pattern Recognition Workshop, Baltimore, 
MD, October 1985. 

 
I nervously presented, was puzzled by a question about 
statistical methods, and thankfully went out to the coffee break.  
I had no formal training in fuzzy set theory and had no idea that 
there was any passionate controversy about fuzzy uncertainty.  
A guy came up and yelled at me about how I should be using a 
statistically optimal classifier. Yikes! I stammered a reply 
something like “That would be great, but I have no statistics to 
build it with”. The real reason is deeper, but that’s what I came 
up with at the time.  Anyway, that night was the banquet, and 
they had an open bar and I was a young Assistant Professor …  
I was standing after the meal and heard “Keller!” from behind.  
Worried that my confronter had returned, I spun around to see 
this guy with a beard, a baseball cap, and a flannel shirt sticking 
out his hand and saying “Jim Bezdek, here”.  I was stunned and 
all I could manage was “I read your book”.  Bez told me some 

things I won’t repeat here, and that I needed to come to the next 
NAFIPS meeting to meet many of the fuzzy community (at 
least from North America).  At that 1986 meeting in the French 
Quarter, I was welcomed and embraced by that group of fuzzy 
researchers, led by Professor Zadeh - I found my home.  Hats 
off to Jim Bezdek and Pattern Recognition with Fuzzy 
Objective Function Algorithms. 
 

The rest, as they say, is History. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Jim with two of his fuzzy inspirations in 2005. 
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On a 1965 Great Idea
Enric Trillas

Oviedo, Asturias, Spain
Email: etrillasetrillas@gmail.com

Abstract—A personal view of the author about Fuzzy Sets on
the occasion of the 60 anniversary of its appearance, including his
role in its development (particularly in Spain), his contributions
to the topic, and future prospects.

I.

Sixty years ago, in 1965, Lotfi A. Zadeh (1921-2017)
published his famous paper ‘Fuzzy Sets’ in the journal ‘Infor-
mation and Control’. It was a paper that immediately attracted
the attention of many people for alternatively either praising
and also worshiping, or denigrating, the ideas presented in it.
Trying to concede scientific relevance to imprecision seemed,
to some scientists and in that epoch, a waste of time and,
also, an extravagance, and, even worse, a sample of wistful
thinking. Zadeh ended up being insulted as a researcher.

Such attitudes continued up to when Japanese industries
did place in the markets what were known as ‘Fuzzy Logic
Products’ thanks, in an important part, to the work of Professor
Michio Sugeno (1940-2024), then at the Tokyo Institute of
Technology, among a pleiad of excellent Japanese researchers.
Such products meant the technological success of Fuzzy Sets
and almost reduced contrary voices to silence.

If the industrial relevance of Zadeh’s new ideas did show the
inadmissibility of the critics, anyway such voices still lasted,
more or less sotto voce, for some time. I remember well, for
instance, the words of a brilliant American Mathematician
who, in the last seventies of the former 20th Century, said
to me (or perhaps better, ‘launched upon me’): ‘Did Zadeh
pretend arrange the world just with functions into the unit
interval?’; he was criticizing Zadeh without understanding
what he was actually doing. Even the famous mathematician
Karl Menger (1902-1985), who did show respect for Zadeh’s
idea, said to me that his own, but probabilistic, ‘Hazzy Sets’,
were most interesting and useful than Fuzzy Sets, when they
are but a particular case and much of linguistic vagueness is
not probabilistic in nature as, years ago, did show Max Black
(1909-1988) with his ‘Profile Functions’ with which he tried
to represent words and meant a true antecedent of Zadeh’s
Membership Functions.

In fact, American Critics did not capture well Zadeh’s ideas,
and, actually, were some brave engineers out of the United
States, like Professor Abe H. Mamdani (1942 - 2010), then at
the London’s ‘Queen Mary College’, who applied fuzzy sets
to control mechanisms. Today, Zadeh’s 1965 paper is one of
the most cited papers in the last sixty years.

II.
In Spain, like in many countries, those that knew those

ideas were in the praise side, and the first among them were
professors Alfredo Deaño (1944-1978) in the ‘Complutense
University of Madrid’, Francisco Azorı́n (1914-1989) in the
‘National Institute of Statistics’, and the author of this paper
who, then in the ‘Polytechnic University of Barcelona’, knew
fuzzy sets in the Summer of 1974, after reading an interview
with Professor Arnold Kaufmann (1911-1994) in a French
newspaper and concerning his then recent book on the ‘sous
ensembles flous’.

I had the idea and the chance of attracting some researchers,
then very young people, to study and develop Fuzzy Sets
Theory and generating, jointly and finally, one of the world’s
best communities on the subject. Deaño just wrote a nice infor-
mative chapter on Fuzzy Logic in his 1975 book ‘Introducción
a la lógica formal’, and Azorı́n tried to use Fuzzy Sets for
imprecise questions/answers in Statistical Surveys, a subject
on which he published some papers. By my part and from 1977
up to now, I published more than four hundred papers, twelve
books, supervised more than twenty doctoral dissertations on
Fuzzy Logic subjects being mine the first book in Spanish on
Fuzzy Sets [E.Trillas, 1979.’Conjuntos Borrosos’.Ed. Vicens-
Vives, Barcelona]. Our Spanish community arrived, thanks to
the intellectual drive of people like Professor Miguel Delgado
in the ‘University of Granada’ to reach, at the beginning of the
21st Century, the third world’s place by number of publications
in Fuzzy Logic in a country that then, and by its total number
of scientific publications, was in between the twelve and ten
world’s position.

III.
I met Lotfi Aliasker Zadeh in Barcelona in July 1977; it was

in occasion of the ‘First World Conference on Mathematics
and the Service of Man’ of which I was one of its organizers
and invited Zadeh to deliver a Plenary Lecture whose subject,
a view of Fuzzy Sets from a new Theory of Possibility meant,
for me and jointly with the concept of a Fuzzy Entropy
introduced in 1972 by Aldo de Luca (1941-2018) and Settimo
Termini (1945), to definitively falling in love with Zadeh’s
ideas, as well as the starting point of a deep and unforgettable
friendship with Zadeh, that lasted for forty years up to his
death in 2017. I must openly declare how much I miss him.

Zadeh was for me both a friend and, mainly, a true teacher
who not only gift us with Fuzzy Sets and Fuzzy Logic as
the central part of his scientific inheritance, but also with
what he called ‘Computing with Words’ (CwW), and ‘Soft
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Computing’ (SC), introduced by him in the mid nineties of
last 20th Century. From these days it already did pass a period
of time sufficient to expect some substantial progress on CwW
that, nevertheless, only seems to be scarcely reached, let me
say, in just minor questions.

For my part, and with the aim of contributing even indirectly
to such progress, I tried to reconsider the same concept of a
Fuzzy Set, as well as what is in the back of Fuzzy Logic.
Leaving aside why the basis of CwW did receive a so scarce
attention, and with just the brief and painful comment that I
wonder myself if, perhaps, the current fashion on Artificial In-
telligence drains the attention of too many young researchers.
Who knows the influence insistent news in the media can
have in such fashion; nothing too different, notwithstanding,
to what, long time ago, happened with Relativity Theory and
Atomic Energy attracting students to Physics.

IV.

I will refer to just a part of what I did concerning the
use of Fuzzy Logic to better understanding Common Sense
Reasoning after devoting my efforts to study the validity of
classical laws with fuzzy sets, a subject that produced me
surprises like it was the validity with fuzzy sets of the (very
crisp!) set’s law of ‘perfect repartition’. If sets are inspired in
true collections of objects, fuzzy sets are but mind linguistic
entities: if everybody can see either a set of watermelons, or a
set of pencils, nobody can neither see, for instance, the fuzzy
set of young Spaniards, nor that of tall Italians. Usually fuzzy
sets are not sets.

In addition, and contrary to what, following Zadeh’s own
1965 definition, is said in all treaties of Fuzzy Set Theory,
given a linguistic label a membership function alone can’t
define a fuzzy set since, and as everyone using fuzzy sets
knows, the same fuzzy set can be exhibited by several mem-
bership functions just preserving some, let me say, ‘family
resemblance form’. Confusing a fuzzy set with one of its
membership functions is a conceptual mistake and, for my
taste, the existing theory lacked a (formal) qualitative point
of view. But it was the hint from the same Zadeh: ‘fuzzy
sets do concern the ‘extensional meaning’ of their linguistic
label’, that conducted me to the decisive word ‘meaning’
I immediately related with the famous Ludwig Wittgenstein
(1889-1951) statement: ‘The meaning of a word is its use in
language’, concerning a purely qualitative view and reflecting
what is done in practice by designing membership functions.

Since linguistic labels are but predicates, that is, adjective
words ‘saying something’ objects into consideration do show,
I thought that ‘use’ can refer to variation, and ‘extensionality’
to degree, as well as that the ground idea is of a relational
character. When variation is done under separate, identical and
clearly distinguishable steps, degrees, the word is precise, with
a rigid, crisp, meaning; when the steps are not distinguishable,
the word is imprecise, with a vague, fuzzy, meaning.

All those reflections conducted me to define the qualitative
or primary meaning in a universe of discourse, X , of a
predicative adjective, P , by means of the binary and perceptive

relation < P in the universe X , defined by: ‘x < Py ⇔ x
is less P than y’, that, if P names some property p of the
elements, is equivalent to: ‘x shows property p less than y
shows it’. If it does not seem rare to accept that < P is
reflexive, only exceptionally it will be antisymmetric, and less
exceptionally transitive. In this way, we arrive to a graph
(X,< P ) = P reflecting the use of P in X; a graph that
can or cannot have maximal or minimal elements and, called
the ‘qualitative or primary meaning’ of P on X , can be also
seen as the fuzzy set in X with linguistic label P . In addition,
when given P in a universe X , and a graph P is known, it is
said that P and p are ‘measurable’ on X and, if such graph
is unknown, that P and p are ‘metaphysical on X’.

Since it is clear that both Science and Technology mainly
deal with measurable, non metaphysical properties it is, per-
haps, that dealing with metaphysical concepts is what separates
Science and Philosophy. It seems appropriate to pose the
question: is it the ‘thought’s demarcation’ some philosophers
did search for?

Finally, and to see what is a membership function for P ,
it just suffices to introduce extensionality by means of some
measure mP : X → [0, 1], that is, by a function whose basic
properties are: 1) x < Py ⇒ mP (x) < mP (y); 2) If u is a
minimal in the graph, mP (u) = 0; 3) If v is a maximal in the
graph, mP (v) = 1, a concept I defined by inspiring me on the
Michio Sugeno definition of a (non necessarily additive) fuzzy
measure in his 1974 Ph.D. Thesis,’Fuzzy Integrals and Its
Applications’, as well as in some hints appearing in the paper
[R.Capocelli, A. de Luca, 1973, ‘Fuzzy Sets and Decision
Theory’, ‘Information and Control’:23:446-473].

With all that we finally count with the scalar magnitude
(X,< P,mP ) = Pm, a quantity I called a quantitative
or total meaning of P in X , and with which the new and
clearly linear relation < m on X , defined by: x < my ⇔
m(x) < m(y), is reflexive, antisymmetric and transitive, a
partial order, and contains the former relation < P since:
x < Py ⇒ mP (x) < mP (y) ⇔ x < my, and when there
is coincidence between both relations < P and < m it is
said that mP reflects meaning perfectly. It can be also said
that measuring amplifies the primary meaning, an observation
alerting practitioners (always working with a Pm instead of
P ), of only attributing semantically to P what comes from
< P , since what < m adds to the primary meaning of P
is not qualitative information. In addition and obviously, the
measure mP can be seen as a membership function of P since
it clearly measures up to which extent each element x (in X)
is P . It is also obvious that properties 1,2 and 3 of mP are
not, in general, enough for specifying a single function mP : in
general, to specify a measure more information on the behavior
of P in X is necessary. Notice that magnitude Pm can be seen
as the state in which P is currently manifested and, also, as
a ‘working fuzzy set’ version of P .

V.

The four pages limitation makes impossible to extend the
paper with the author’s view of Commonsense Reasoning,
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where he did open a window toward clarifying what can be
understood by ‘inducing’ after formalizing deducing, abduc-
ing, conjecturing or guessing, and refuting in the framework
of a small set of axioms he called the ‘skeleton’ of reasoning
allowing to prove as theorems the Aristotle’s Principles of
Non-Contradiction and Excluded Middle. He also introduced
‘speculations’, conclusions orthogonal to the premise that
logicians did left aside, as well as considered the ‘act of
reasoning’ as an inferential zigzag around the premise done
by sequentially alternating deduction and abduction, and re-
inforcing the view of the (essential) role language plays at
each step in the act of reasoning. These contributions can be
studied in the books: 1) E.Trillas, S. Termini, M.E. Tabacchi,
2022, ‘Reasoning and Language at Work / A Critical Essay’.
Springer. 2) E. Trillas, 2022, ‘La génesis de la lógica /
Reflexiones ingenuas’. EUSC, translated into English as: ‘The
Genesis of Logic / Reflections on the Origins, Principles and
Paths of Common-sense Reasoning’, 2024, Springer, and also
in the paper [E,Trillas and J,M,Terricabras, ‘A Scrutiny on
Representation / A New View on Meaning and Reasoning’;
‘Archives on the Philosophy and History of Soft Computing’
1/2016:1-50].

VI.

Last but not least, let’s come back to Zadeh’s heritage by
stating that without his intellectual support and help to all of
us, the successes reached by the Spanish ‘Fuzzy Community’
would have been much less known around the world than they
were; even, perhaps and possibly, remaining almost unknown.
It should be added that Zadeh’s ideas are still alive, and that
the critical reading of his contributions is worth deserving for
anyone wishing to make original contributions to Fuzzy Logic
and, among them and especially, his (rather curious, surprising
and full of hints) 2012 book ‘Computing with words. Principal
Concepts and Ideas’, in Springer.

The flexibility fuzzy sets exhibit is essential to deal with
Natural Language and Commonsense Reasoning, and it is
more so once its closeness to the semantic concept of meaning
is known as well as when the ‘skeleton’ shows that the rigid
lattice structure is just a local one in language. Actually,
Zadeh’s ideas show a possible path towards a new and still
unknown Natural Science of Reasoning and Language since,
at the end, they are but Natural Phenomena like for Physics
are Movement, Energy and Time. In addition, reinforcing the
relationship between Fuzzy Logic, as a Mathematical Science
of Meaning, and the Neurosciences, seems to be an enterprise
of a relevant interest and whose success can be envisaged
in the book [U.Sandler, L.Tsitolovsky, 2008; ’Neural Cell
Behavior and Fuzzy Logic’. Springer’]. I strongly recommend
researchers to do any trial concerning to (creatively) establish
such still unknown Natural Science, as well as to look for its
relationship with Brain Studies; a recommendation I also ex-
tend to beginners since it is a challenging scientific opportunity
for arriving to an Arquimedian Eureka!
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Abstract—Fuzzy sets, FL, CWW and CWP have repeatedly led
to successful extensions in theory and applications in the history
of artificial intelligence (AI). Even in today’s world, where AI
no longer stands only for symbol-processing, but sub-symbolic
systems in many circles and machine deep learning dominates
this field, FL, CWW and CWP have still a word to say, and
will lead to interesting variants; the fusion of quantum logic and
AI is a possible example of how FL again offers space for new
developments in AI.

Index Terms—Fuzzy set theory, LLMs, Fuzziness.

I. FL, CWW AND AI

From the very beginning, fuzzy sets were associated with
an application potential that Lotfi Zadeh, their founder [1],
had suspected in the early years in the humanities and social
sciences [2]. He was surprised when, in the early 1970s, a
revolution in the field of control theory and technology [3],
initiated by Sedrak Assilian and Ebrahim Mamdani, set in
motion the first great success story of fuzzy sets [4], [5].
When computers became much faster, so that the control of
complex systems, even with classical controllers, became just
as successful as fuzzy control, the sensational applications of
fuzzy sets shifted to clustering, data mining and information
mining. In the 1950s, the field of artificial intelligence (AI) had
become a field of research to build computers and computer
programs that act ’intelligently’. AI methods were methods
to compute with numbers and find exact solutions. However,
not all problems could be solved with these methods. On the
other hand, humans are able to resolve such tasks very well, as
Zadeh mentioned in many speeches and articles over the last
decades. In conclusion, he stated that “thinking machines” do
not think as humans do. From the mid-1980s he focused on
“Making Computers Think like People” [3]. For this purpose,
the machine’s ability “to compute with numbers” should be
supplemented by an additional ability that is similar to human
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CUP B53D23030160001 – Grant Assignment Decree No. 1371 adopted on
01/09/2023 by the Italian Ministry of University and Research (MUR).

thinking: Computing with Words (CWW) and Perceptions
(CWP).

In the mid-1980s, the philosopher John Haugeland (1945-
2010) coined the term GOFAI (Good Old Fashioned Artificial
Intelligence). He distinguished it from newer AI approaches
that used artificial neural networks and classification trees [6].
GOFAI was based on the assumption that aspects of intelli-
gence can be achieved by manipulating symbols in a machine.
can be achieved. To this end, algorithms were formulated
in programming language and then executed command by
command.

These NFAI (“New Fashioned AI”, or “New-Fangled AI”)
did not suddenly replace GOFAI, rather the developments of
both AI approaches overlapped and they are both still being
pursued. NFAI systems as Artificial neural networks (ANN),
evolutionary algorithms, genetic algorithms,ant-algoithms and
statistical algorithms as classification trees (CT) are algorithms
that search for patterns in data sets. In this way, they ac-
complish something that humans can do poorly or not at all,
namely mastering large amounts of data. With these and now
many other data-driven algorithms, machine learning (ML) can
perform tasks that humans are not capable of.

In 1990, Lotfi Zadeh coined the label ’Soft Computing’
(SC) to name an interdisciplinary field that covers different
approaches to AI that had been developed but weren’t part of
the mainstream of AI:

By design, soft computing is pluralistic in nature
in the sense that it is a coalition of methodologies
which are drawn together by a quest for accommo-
dation with the pervasive imprecision of the real
world. At this juncture, the principal members of
the coalition are fuzzy logic, neurocomputing, evolu-
tionary computing, probabilistic computing, chaotic
computing, and machine learning. [7]

When Hans-Jürgen Zimmermann, founding editor of the
journal Fuzzy Sets and Systems, foresaw that the development
of ’hybrid systems’ of ’fuzzy neuro-evo-combinations’ would
continue in the future, he deliberated about a name for the
common field of research, which would then also become
the subtitle of the journal. These concepts seemed to be
attractive in different ways and also varied with respect to
their expressive power. He suggested calling the field ’soft
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computing and intelligence’ since the other concepts seemed
to place too much emphasis on ’computing’ ’which is certainly
not appropriate, at least for certain areas of fuzzy set theory.’
[8]. In recent decades, the term AI has increasingly be-
come synonymous with ML and today large language models
(LLMs) also offer a huge field of application for fuzzy sets.

Machine learning models enable predictions of future events
based on measurements and data generation and large lan-
guage models (LLMs) predict which word matches existing
words based on previous word classifications. Fuzzy sets can
be useful for both the measurement and the matching, as well
as for the adaptation of these predictions, known as “learning”.

A specially useful concept that can translate well from the
realm of Fuzzy Logic (FL) to AI systems is that of Computing
with Words (CWW, also CWP when perceptions are included)
[9]. This is the idea that the late father of Fuzzy Logic, L.
A. Zadeh, has envisioned in the last years of his long career
as the unifying concept behind all of Fuzzy Logic (FL): a
way to eschew for good the necessity of mediating reasoning
through numbers, and to achieve a better, more ecological way
of reasoning:

Fuzzy logic has come of age. Its foundations have
become firmer, its applications have grown in num-
ber and variety, and its influence within the basic
sciences – especially in mathematical and physical
sciences – has become more visible and more sub-
stantive. Yet, there are two questions that are still
frequently raised: a) what is fuzzy logic and b) what
can be done with fuzzy logic that cannot be done
equally well with other methodologies. [10, p.77]

The basic idea is that the reducing all our reasoning to
numbers, a necessity that comes out of the need to represent
concepts in computations and that is a mainstay of classic,
control-bound FL, should be kept at a lower level, and that
the higher level of representation is the one the effort should
be directed to. In this idea there is a rekindling of FL
with classical logic, which is in effect a way of computing
with words. Clearly examples of that are Propositional and
Predicate logics, where the centre of computation are terms
that represent reality, and computation itself is an aggregation
of such terms following a number of simple rules. CWW aims
at expanding the same idea to include intrinsic properties of
the human language such as imprecision and vagueness (as
the original FL expands boolean algebra):

There are two major imperatives for computing with
words. First, computing with words is a necessity
when the available information is too imprecise to
justify the use of numbers; and second, when there
is a tolerance for imprecision which can be exploited
to achieve tractability, robustness, low solution cost
and better rapport with reality. Exploitation of the
tolerance for imprecision is an issue of central im-
portance in CW. At this juncture, the computational
theory of perceptions — which is based on CW —

is in its initial stages of development. In time it may
come to play an important role in the conception,
design and utilization of information/intelligent sys-
tems. [. . . ] The role model for CW [. . . ] is the human
mind. [9, p.103]

While the original concept has not (yet) lived up to its
promises, it is possible to find traces of the original ideas in
many of the more recent implementations of AI – which is, in
our opinion, unavoidable: it really seems impossible to build,
e.g., a credible model of human language without keeping in
account the inherent properties of it, and without confining
numbers at a lower, less accessible level. Just as a hint, two
examples are given.

LLMs

LLMs, the algorithm behind most of the current generative
language systems in AI, are based on tranformers, which in
turn rely on the concepts of Embedding and Attention [11].

Embeddings are internal representations of words or tokens
that allow a language model to understand and work with
language more effectively. When text is input into a large
language model, each word or token is transformed into a
format that captures its meaning and how it relates to other
words. These representations are not fixed; they evolve based
on how words are used in context, allowing the model to
distinguish, for example, between different senses of the same
word.

These representations also include information about the
position of each word in the sentence, helping the model to
to grasp the structure and flow of language. As the model
processes input through multiple layers, these internal repre-
sentations become increasingly refined, enabling the model to
generate coherent responses, understand intent, and perform a
wide range of language-related tasks.

It is as well possible to compute using embeddings, as
the representation of words is subject to operations which
are akin to the application of operators and words to words,
to obtain meanings that are slightly different depending on
the role of the word in a phrase. This mechanism is a clear
example of CWW, as it uses words as the main representation
of concepts and calculation to elaborate. While such meanings
are (obviously) stored as numbers (or, more precisely, vectors),
such representation is removed from the human experience of
an LLM.

QNLP

Quantum Natural Language Processing (QNLP) us a recent
advancement of Quantum Logic aimed at representing Lan-
guages from the point of view of Quantum Computing. In a
recent paper, Coecke et al. [12, p.1] have provided

conceptual and mathematical foundations for near-
term quantum natural language processing (QNLP).
the quantum model for natural language that we
employ canonically combines linguistic meanings
with rich linguistic structure, most notably grammar.
In particular, the fact that it takes a quantum-like
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model to combine meaning and structure establishes
QNLP as quantum-native, on par with simulation of
quantum systems. (. . . )

The system works through diagrammatic reasoning:
Firstly, the quantum model interprets language as
quantum processes via the diagrammatic formalism
of categorical quantum mechanics. Secondly, these
diagrams are made via the ZX-calculus translated
into quantum circuits.

The paper details as an example the construction of a
verb that connects two entities by superposing all the entity
pairs that satisfy the relationship that represent the verb. A
computation of the inner product of the two entities gives a
value that represents the intensity of the relationship between
the two entities.

This mechanism gives results that are essentially equivalent
to a fuzzy degree, and while (again) numbers are used as a
vehicle of computation, the entire system is essentially based
on concepts and combinations of such concepts through the
use of quantum computation.

II. CONCLUSIONS

Over the course of artificial intelligence (AI) development,
the theoretical constructs and applied methodologies associ-
ated with fuzzy sets, fuzzy logic (FL), computing with words
(CWW), and computing with perceptions (CWP) have consis-
tently played a pivotal role in driving progress. These concepts
have not only enhanced the expressive power of AI systems
but also provided robust frameworks for modeling imprecise,
uncertain, and linguistically nuanced information—features
that are often inherent in real-world problems and human
cognition.

Despite the current dominance of sub-symbolic ap-
proaches—particularly those based on machine learning and
deep neural architectures, which have gained widespread at-
tention due to their impressive empirical successes—the foun-
dational principles of FL, CWW, and CWP continue to offer
critical value. In fact, these paradigms remain highly relevant
in addressing challenges related to interpretability, explain-
ability, and human-aligned reasoning, which are increasingly
recognized as limitations of purely data-driven systems.

Today, FL, CWW, and CWP persist as vibrant areas of
inquiry, with the potential to inspire new theoretical exten-
sions and innovative applications. One particularly promising
direction lies in the convergence of fuzzy logic with emerg-
ing computational paradigms, such as quantum computing
and quantum logic. This intersection presents fertile ground
for the creation of hybrid AI models capable of integrating
probabilistic reasoning, linguistic uncertainty, and quantum
indeterminacy in a coherent and meaningful manner.

In this context, fuzzy logic does not merely retain a histori-
cal or auxiliary role in AI; rather, it positions itself as a flexible
and adaptive formalism that continues to enrich and expand
the field. Its capacity to serve as a bridge between symbolic,
sub-symbolic, and quantum paradigms suggests that FL and

its associated methodologies are well-equipped to contribute
to the next generation of intelligent systems.

REFERENCES

[1] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp.
338–353, 1965.

[2] ——, “Towards a theory of fuzzy systems,” in Aspects of Network and
System Theory, R. Kalman and N. DeClaris, Eds. Holt, Rinehart, and
Winston, New York, 1971, pp. 469–490.

[3] ——, “Making computers think like people,” IEEE Spectrum, vol. 8,
pp. 26–32, 1984.

[4] S. Assilian, “Artificial intelligence in the control of real dynamic
systems,” Ph.D. Thesis, vol. No. DX193553„ 1974.

[5] E. M. Mamdani and S. Assilian, “An experiment in linguistic synthesis
with a fuzzy logic controller.” International Journal of Man-Machine
Studies, vol. 7, no. 1, pp. 1–13, 1975.

[6] J. Haugeland, Artificial Intelligence: The Very Idea. Cambridge, Mass.:
MIT Press., 1985.

[7] L. A. Zadeh, “Foreword,” Applied Soft Computing, vol. 1, no. 1, pp.
1–2, 2001.

[8] H. J. Zimmermann, “Editorial,” Fuzzy Sets and Systems, vol. 69, no. 1,
pp. 1–2, 1995.

[9] L. A. Zadeh, “Fuzzy logic = computing with words,” IEEE Transactions
on Fuzzy Systems, vol. 4, no. 2, pp. 103–111, 1996.

[10] ——, “Fuzzy logic, neural networks, and soft computing,” Communica-
tions of the ACM, vol. 37, no. 3, pp. 77–84, 1994.

[11] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Łukasz Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in Neural Information Processing Systems (NeurIPS).
Curran Associates, Inc., 2017, pp. 5998–6008. [Online]. Available:
https://arxiv.org/abs/1706.03762

[12] B. Coecke, G. de Felice, K. Meichanetzidis, and A. Toumi,
“Foundations for near-term quantum natural language processing,”
arXiv preprint arXiv:2012.03755, 2020. [Online]. Available: https:
//arxiv.org/abs/2012.03755



20

60 Years of Fuzzy – Past, Present, and Future:
A Personal Opinion

1st Olga Kosheleva
Department of Teacher Education

University of Texas at El Paso
El Paso, Texas 79968, USA

olgak@utep.edu
ORCID 0000-0003-2587-4209

2nd Vladik Kreinovich
Department of Computer Science

University of Texas at El Paso
El Paso, Texas 79968, USA

vladik@utep.edu
ORCID 0000-0002-1244-1650

Abstract—In this paper, we express our view of what were the
main challenges that faced fuzzy activities, how some of these
challenges were successfully resolved and what is, in our opinion,
the main remaining challenges.
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computations, machine learning

I. THE BIRTH OF FUZZY: A BRIEF DESCRIPTION OF THE
MAIN MOTIVATION AND MAIN IDEAS

Why fuzzy: an important practical challenge that led to
fuzzy. In the early 1960s, Lotfi Zadeh, who was at that time
one of the world’s best specialists in control and a co-author
of the most popular control textbook, noticed that in many
practical cases, there appeared as unexpected limit on what
automatic control can achieve. In many cases, even with the
optimal algorithms, the automatic control was not performing
as effectively as the manual control by skilled controllers.

Of course, one cannot do better than the optimal control, so
the problem was that the models of the controlled systems –
models used to design automatic control – were not perfect:
skilled controllers knew something about these systems that
was not incorporated into these models. In many cases, these
controllers explicitly explained what exactly was missing – but
the problem was that they could only explain their knowledge
by using imprecise (“fuzzy”) words from natural language, like
“small”. We understand these words, but automatic systems
need exact instructions.

Many of these expert controllers were skilled in math-
ematical techniques, but they still could not describe their
knowledge in precise terms. This inability is normal. For
example, most people can walk and run, but can we explain
in precise terms how we do it? It is doubtful.

How Zadeh encountered this challenge. Since natural lan-
guage is the only way this additional knowledge is available,
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Zadeh decided to translate such imprecise knowledge into
precise computer-understandable terms. He also coined the
word “fuzzy” to describe techniques for such translation, and
he proposed specific techniques for this purpose.

One of Zadeh’s main ideas came from the fact that a “crisp”
(= precise) property like “positive” can be describing by as-
signing, to each possible value x of the corresponding quantity,
the truth value “true” or “false” depending on whether x has
this property (e.g., whether x is positive). In the computer,
“true” is usually represented as 1 and “false” as 0, so we
assign, to every x the value 0 or 1.

We cannot do that with properties like “small”, since for
some values x, we are not 100% sure that this value is small,
and we are not 100% sure that the value is not small. Such
values are small to some extent. So Zadeh proposed to ask
the experts to estimate, for each x, the extent to which the
corresponding property is satisfied by a number.

Such an estimation is not a new idea: we do it every time
we fill a survey on how happy we are with some service or
some purchase. Students do it in their annual evaluation of
instructors, etc.

In practice, we can have many different scales. To make
them uniform – and to get closer to the crisp 0-or-1 case,
Zadeh suggested to reduce all the degrees to the scale from 0
to 1.

Thus, according to Zadeh’s original idea, to describe each
imprecise property, we assign, to each possible value x of
the corresponding quantity, a value m(x) from the interval
[0, 1] describing to what extent x satisfied this property. Zadeh
called the resulting function m(x) a membership function or,
alternatively, a fuzzy set.
Steps of the resulting methodology. The above idea naturally
leads to the following stages of the resulting methodology:

• First, we elicit, from the experts, the corresponding
membership functions.

• Then, we need to process this additional information to
come up with an appropriate control – just like automatic
controllers of that time used crisp information to come
up with a control.

• Finally, we need to incorporate this new information into
the existing automatic controllers, to make them better.
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This was not easy sailing. The ideas were interesting, but
immediately challenges appeared on all three stages – as a
result of which, almost a decade went by before the first
successful application appeared. Since the mid-1970s, fuzzy
techniques have been successfully applied; see, e.g., [1], [7],
[9], [10] – but some challenges remain. To better understand
the remaining challenges – and to come up with ideas on how
to overcome them – it is important to recall what were the
previous challenges and how they were resolved.

II. CHALLENGE RELATED TO ELICITING KNOWLEDGE
FROM EXPERTS: WHAT IT WAS AND HOW IT WAS

RESOLVED

Why is elicitation a challenge? At first glance, elicitation
should be easy: we ask an expert for a number m(x), he/she
produces a number, what’s the big deal?

But let us recall why we need these numbers in the first
place. In the ideal world, an expert driver should be able to
tell us exactly for how many millisecond and with what exactly
force he brakes in a typical traffic situation – e.g., when on a
freeway, a car 30 feet in front slowly down from 65 mph to
60 mph. In reality, a driver cannot provide this information.
Instead of providing the exact duration of braking, the driver
will just say “a short time” – and when you force the driver to
provide a definite answer, he/she will provide different answers
when asked the same question again.

Now you ask the same driver to describe his/her degree of
confidence – e.g., that 100 msec is a short time – by an exact
number. Clearly, the same driver who cannot provide the exact
braking duration cannot provide the exact degree value either
– and similarly, if you force him/her to provide a definite
answer, he/she will provide different answers when asked the
same question again.

If we use both (somewhat different) solicited values in the
actual control, we get different results depending on which
of these two values we use. In other words, in addition
to eliciting knowledge, we also add, to our system, some
undesired randomness. So, the challenge was – how to make
elicitation process more natural? How to make sure that the
elicitation captures the experts’ knowledge – and does not add
any unwanted randomness?
A natural solution to this challenge. As we have mentioned,
eliciting numbers from people is not something Zadeh in-
vented, it has been done, for many decades, in surveys. So
why don’t surveys have this problem?

Well, the answer is straightforward: surveys do not ask the
user to pick up a real number from some interval. Instead,
a survey usually provides a few selected numbers to choose
from. For example, if the choice is – as with many US-based
student evaluations – between 0, 1, 2, 3, and 4, then selecting
0 means, in effect, that the student’s degree is somewhere
between 0 and 0.5; selecting 1 means that it is somewhere
between 1.5 and 2.5, etc. In other words, the surveys take into
account that most people are unable to describe their opinion
by an exact real number. Instead, they, in effect, allow the users
to describe their degree not by a number, but by an interval.

So, a natural idea is to allow the user to describe his/her
degree of confidence not by a single number m(x), but
rather by an interval [m(x),m(x)]. Such interval-valued fuzzy
techniques was first proposed by Zadeh himself – and since
then has led to many successful practical results; see, e.g., [7].

We can go further and ask: it is reasonable to expect the
expert to produce exact values m(x) and m(x)? Just like for
braking duration, where the most natural expert’s answer is a
natural-language “fuzzy” term – that is described by a fuzzy
set – similarly, the most natural way for the expert to produce
a degree m(x) is to use a natural-language fuzzy term – that
is also described by a fuzzy set. This idea – where each m(x)
is itself a fuzzy set – is known as a type-2 fuzzy set. Such
objects have also been successfully used in many application;
see, e.g., [7] and references therein.

III. CHALLENGE RELATED TO PROCESSING FUZZY
INFORMATION: WHAT IT WAS AND HOW IT WAS

RESOLVED

So how do we process fuzzy information? Control does
not mean that we simply use sensor readings, we first process
them. What if instead of sensor readings, we have fuzzy expert
opinions – how do we process them? Even if processing is very
simple in the crisp case – e.g., if we add two numbers – how
can we just add two fuzzy numbers?
Theoretical solution: Zadeh’s extension principle. The main
idea behind the answer to this question was also provided
by Zadeh’s himself – and it is now called Zadeh’s extension
principle. This solution grew from a simpler question related
to the use of propositional connectives like “and”, “or”, and
“not”. Suppose that we have elicited, from the expert, a
reasonable rule like “If the car in front is not very close and
it slows down a little bit, then you brake a little bit”. We can
elicit, from the expert, a fuzzy set corresponding to “not very
close” and a fuzzy set corresponding to “a little bit”. However,
what we need is to be able to describe, for each pair (d, f) of
distance d and force f , to what extent the compound statement
“the car in front is not very close and it slows down a little
bit” is true. How can we do it?

Suppose that we consider N possible values of each quan-
tity. So, to elicit two fuzzy sets, we need to ask 2N questions
to the user. But to describe the degree corresponding to all
pairs, we need N2 – and if there are three conditions, N3,
etc. This clearly becomes not realistic. Since we cannot elicit
the degrees of all such compound statements A&B, a natural
idea is to estimate such degrees based on available information,
i.e., based on the degrees a and b of statements A and B.
So, we need an algorithm f&(a, b) that, given the degrees
of confidence in statements A and B, estimates the degree
of confidence in the statement A&B. Such an algorithm is
known as an “and”-operation or, for historical reasons, as a
t-norm.

Similarly, we need an “or”-operation f∨(a, b) – which is
usually called a t-conorm. Under reasonable assumptions, the
simplest t-norm is min(a, b) and the simplest t-conorm is
max(a, b).



22

Now we are ready to explain Zadeh’s extension prin-
ciple. Let us recall the problem. We have an algorithm
f(x1, . . . , xn). In the traditional data processing, we would
apply this algorithm to n numbers – n values of the corre-
sponding quantities. But what if instead of the exact values xi,
we only have expert opinions – described in terms of fuzzy sets
mi(xi)? In this case, the result y = f(x1, . . . , xn) of applying
the function f(x1, . . . , xn) to these fuzzy numbers should also
be fuzzy. How can we find the corresponding degrees m(y)?

Each value m(y) is the degree to which y is a possible
value of the corresponding quantity. A value y is possible if
there exist values x1, . . . , xn for which x1 is a possible value
of the 1st input, x2 is a possible value of the 2nd input, etc.,
and y = f(x1, . . . , xn). The degree to which x1 is possible
is known – it is m1(x1). Similarly, the degree to which x2 is
possible is m2(x2), etc. So, if we use min to describe “and”,
the degree to which x1 is possible and x2 is possible, etc.,
is equal to min(m1(x1), . . . ,mn(xn)). And what is “there
exists”? It is nothing else but the infinite “or”: it means that
this property either holds for one of the tuples (x1, . . . , xn),
or for another tuple, etc. So, if we use max for “or”, we end
up with Zadeh’s formula:

m(y) =

max(min(m1(x1, . . . ,mn(xn)) : f(x1, . . . , xn) = y). (1)

Computational challenge. From the theoretical viewpoint,
Zadeh’s formula (1) is perfect: it is a natural formalization of
the commonsense meaning, and it is, in principle, computable.
The problem is that even for simplest algorithms like addition
f(x1, x2) = x1+x2, algorithm that, in the crisp cases, requires
a single computational step, computing (1) means solving a
complex optimization problem with a non-smooth (because
of min) objective function. Such problems usually require
thousands (and more) computational steps. In other words, it
means that the use of this formula slows down computations
by several orders of magnitude.

What can we do?
A natural solution to this challenge. To solve this challenge,
a natural idea is to take into account that in many cases, even
when the information is fuzzy, we need to make a decision
– and decisions are the ultimate objective of all practical
situations: shall we recommend a surgery to a patient? shall
we brake in a traffic situation? shall we buy or sell certain
stock? shall we take a job offer? In general, if our degree of
confidence is high, we should make this decision, if it is low,
we may need to collect more information. Thus, a natural idea
is to select some threshold value α ∈ (0, 1], and to make a
decision if our degree of confidence is larger than or equal
to α.

For each fuzzy set m(x) and for each α, it makes sense to
consider the set of all the values x for which the decision is
made, i.e., the set mα

def
= {x : m(x) ≥ α}. This set if known

as the α-cut of the original fuzzy set. For most reasonable
properties like “small”, as we increase x from its smallest

possible value, the degree m(x) first grows, then it reaches its
maximum (e.g., for x = 0), then starts decreasing. For such
fuzzy sets, all α-cuts are intervals.

It is known that a fuzzy set is uniquely determined by its
α-cuts: namely, m(x) = inf{α : x ∈ mα}. Because of the
practical importance of α-cuts, it is desirable to describe all
operations with fuzzy sets – including (1) – in terms of α-
cuts. And, somewhat surprisingly, this idea – first described
by Hung T. Nguyen in his 1978 paper [8] – solved the
computational challenge.

Indeed, when is the degree m(y) greater than or equal to
α? The maximum of several numbers is larger than or equal
to α if and only if at least one of them is ≥ α, i.e., when
there exist values x1, . . . , xn for which y = f(x1, . . . , xn) and
min(m1(x1), . . . ,mn(xn)) ≥ α. And when is the minimum
of several numbers larger than or equal to α? When each of
these numbers is ≥ α, i.e., when m1(x1) ≥ α and . . . and
mn(x) ≥ α. By definition of the α-cuts, this is equivalent to
x1 ∈ m1,α and . . . and x1 ∈ m1,α. Thus, the desired α-cut
mα is equal to

mα = {f(x1, . . . , xn) : x1 ∈ m1,α, . . . , x1 ∈ m1,α}. (2)

The expression in the right-hand side of the equality (2) is
known as the range of the function f(x1, . . . , xn) on the sets
mi,α. This range is usually denoted by f(m1,α, . . . ,mn,α).
So, Zadeh’s formula (1) can be described as follows:

mα = f(m1,α, . . . ,mn,α).

In other words, processing fuzzy data can be reduced to
processing intervals.

From the computational viewpoint, this is good news,
because for processing intervals, there are many effective
algorithms; see, e.g., [2], [4], [6] (which are, by the way,
often under-used by the fuzzy community). For example,
for addition f(x1, x2), as one can easily check, adding two
intervals [a, a] and [b, b] simply means adding lower endpoint
and adding upper endpoints:

[a, a] + [b, b] = [a+ b, a+ b].

So, when we need to add two fuzzy numbers, it is sufficient
to add lower endpoints and upper endpoints of all the α-cuts.
Yes, we need more operations than in the crisp case, but only
because we have more values to process. The complexity of
processing each pair of values is still the same – much faster
than in solving the optimization problem (1).

And the same drastic decrease in computation time happens
for all monotonic operations.

IV. CHALLENGE RELATED TO COMBINING FUZZY AND
OTHER TECHNIQUES

What was (and is) this challenge: a brief reminder. The
third challenge is to combine fuzzy techniques with more
traditional methods. While there have been many successes
in this direction, this is still largely work in progress.
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In the past, such combination meant combining fuzzy
control with traditional control methods, now it also means
combining fuzzy techniques with deep learning, etc.

Maybe this is how we can solve this challenge. The fact that
both two previously described major challenges were solved
by using interval techniques makes us think that maybe inter-
val techniques can also help us to combine fuzzy techniques
with other methods.

Some preliminary results make us hopeful about interval
techniques. For example, it turned out that the use of interval
uncertainty helps to make deep learning more effective; see,
e.g., [5]. This improvement is based on a very simple idea:
that since training data comes with some accuracy, it makes
no sense to perform computations with higher accuracy. For
example, if we have measurement results with 1% accuracy,
it only makes sense to compute intermediate results with 1%
accuracy – and computing third and fourth etc. digits of these
results is a waste of time.

There have also been efficient algorithms for propagating
uncertainty – in particular, interval and fuzzy uncertainty –
via deep learning [3].

V. WHAT NEXT FOR FUZZY?

Overall, we have all the reasons to be optimistic about the
future of fuzzy. There are general reasons to be optimistic
about the future of fuzzy. After all, the ultimate goal of all
the inventions, of all the gadgets, of all the controls is to
make us happy. And what makes us happy is not easy to
describe in precise terms. It is not only objective characteristics
like money: many high-income people are unhappy. This
uncertainty of an objective is one of the main reasons why
fuzzy techniques were so successful in the 1980s. For example,
fuzzy rice cookers made the most tasty rice – and there is
no easy way to describe it in precise terms. Fuzzy-controlled
Sendai train had the smoothest ride – and there is no easy way
to describe perceived smoothness in precise terms.

Researchers have been trying to formalize our perceptions
for many decades, and it is clear that this is still – and will
remain for a long time – a major challenge. As a result,
techniques for translating human perceptions into precise
computer-understandable form – and this is what generally
understood fuzzy techniques are about – are needed and will
be needed.

Will future fuzzy techniques be the same? Most probably
not. Future techniques in the future fuzzy research will be
definitely different from the technical ideas described in the
pioneering 1965 paper by Zadeh – but this is OK: already a
lot of what we consider fuzzy research goes way beyond these
ideas, i.e., beyond degrees from the interval [0, 1] and sim-
plest min and product “and”-operations. Just like now fuzzy
techniques incorporate genetic and neural ideas, future fuzzy
research will incorporate other ideas and techniques – but it
will still be fuzzy, in the sense that it will help to transform
imprecise (“fuzzy”) human statements and perceptions into a
precise computer-understandable terms.

Will we still focus on fuzzy conferences and journals?
Probably not. Research-wise, we are very optimistic about
fuzzy. A next question to ask is: Will fuzzy remain a separate
discipline, with separate conferences and journals? Probably
not.

For example, most engineers and scientists use calculus and
mathematical analysis, but most applications of calculus are
published outside conferences and journals on mathematical
analysis. This already happened 60 years ago. You may
recall that Zadeh’s 1965 paper appeared in the journal titled
Journal of Mathematical Analysis and Its Applications. In spite
of the title – which was preserved for historical reasons –
already in the 1960s, this journal was not a place where a
typical researcher using calculus would submit his/her paper.
Similarly, most papers using linear algebra are not published
in specialized linear algebra journals – and the same is true
for many other mathematical and computational techniques.

This is what Lotfi Zadeh always urged us to do: to consider
fuzzy as one of the tools in a toolbox, to present more at
conferences corresponding to the application areas. His vision
led to Computational Intelligence Society and conferences that
combine different tools. Let us continue to follow this vision.

The future is fuzzy. It is fuzzy as in “imprecise”, but it is
also fuzzy as in “fuzzy research will always be needed”.
So we strongly believe that the future is fuzzy. The future is
fuzzy in the usual sense – that it is difficult to predict what will
happen. And the future is also fuzzy in the optimistic sense
– that research in fuzzy area, i.e., research aimed to describe
imprecise (“fuzzy”) human opinions and perceptions in precise
computer-understandable terms will always be needed – and
(hopefully) will always be successful.
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Abstract— This paper emphasizes the added value that a fuzzy 
approach offers in problems where fuzzy uncertainty is 
unavoidable—whether due to inherently vague input information 
(e.g., linguistic data), the need for fuzzy reasoning for better 
human comprehension, or the preference for fuzzy outputs that 
allow decision-makers to consider context-specific factors and 
assume responsibility. Developing fuzzy information 
representation tools cannot be set aside by the overwhelming 
number of computational tools that do not capture the natural 
fuzziness human beings need to manage their own lives. In 
particular, we claim that fuzzy modeling is in the core of what we 
can call Computational Social Sciences.  

Keywords— fuzzy sets, explainability, computational sciences, 

social sciences, computational ethics, computational social sciences. 

I. INTRODUCTION 
The year 2017 marks a pivotal moment in the history of 

fuzzy modeling—not only due to the passing of Prof. Lotfi A. 
Zadeh but also because of the growing and unstoppable impact 
of computational technologies among fuzzy practitioners. A 
theory born (Zadeh,  [1]) to solve daily life and deeply related to 
natural language and the so-called Artificial or Computational 
Intelligence, the fuzzy approach very fast became an alternative 
for addressing a wide range of problems. Under the impulse and 
the influence of the founder of Fuzzy Sets, Lotfi A. Zadeh, 
together with all the giant pioneers developing its theory and a 
number of key applications, great projects and even scientific 
institutions reached the support of research national foundations 
and prestigious industrial companies. The composition of the 
group of involved researchers has kept a quite constant 
equilibrium in time between Computer Scientists, Engineers and 
Mathematicians (a search within SCOPUS of the term “fuzzy” 
in the key words of scientific papers apparently shows around a 
40% of papers coming from computer scientists, around 35% of 
papers coming from engineers and around a 25% of papers 
coming from mathematicians). But somehow it looks like that 
the impact of fuzzy-based technologies has lost part of the initial 
nerve.  

In this paper we present a very personal view, based upon 
my own past research, to stress that of those small scientific 
pieces each one of us is polishing should should at the end allow 
the development of theoretical and computational tools that take 
advantage of the reality of fuzziness, and manage fuzziness. Of 
course there are still key problems we have not been able to 

solve. For example, the idea of fuzziness might create tension 
within experimental scientists, a context where it is demanded 
the possibility of repeating each experiment in order to check 
results. Such a demand can ne natural when results are crisp and 
at least we can obtain a probability distribution. But in many 
fields, and in particular Social Sciences, quite often this is not 
the case: input data might be fuzzy, information processing 
might suggest fuzzy argumentation and output might be 
preferably fuzzy. 

Indeed, a relevant field where Fuzzy Set theory perfectly fits 
is Social Sciences, that come with specific problems, specific 
contexts and specific objectives that might suggest new tools 
and even a new field for research, Computational Social 
Sciences. 

II. THE COMPETITION WITH PROBABILY 
At the beginning of the history of Fuzzy Sets, strong 

criticisms came from the field of Probability (see, e.g., Zadeh 
[2]), basically claiming that there was no need of another 
uncertainty model, because Probability models were more than 
enough to deal with any kind of uncertainty. As pointed out in 
Montero [3], Kolmogorov’s Probability model (see 
Kolmogorov [4]) strictly applies only to those events being 
isomorphic to a classical set (a crisp set) and some of the 
structures provided by classical Set Theory. Kolmogorov’s 
model is this way a product of binary logic, where potential 
connectives can be naturally reduced to three operators: 
conjunction, disjunction and negation. A rather poor structure 
for fuzzy events (see, e.g., Montero [5,6]). Kolmogorov’s 
probability model is the only appropriate model of uncertainty 
within a crisp, binary framework. But our world, the way human 
beings understand the world, is not crisp. Human society would 
be unbearable if our brain was ruled by Aristotelean binary 
logic.  

Although there are many theories of Probability (see, e.g., 
Fine [7]), and Probability can be developed within more general 
frameworks (see, e.g., De Finetti [8]), it is important to realize 
that our natural language is essentially imprecise and subject to 
gradation (Zadeh [9]). Our natural language allows certain 
consistency tension. Arguments need to be explained and 
developed. This tension in our natural language is usually solved 
by some kind of precisiation (Zadeh [10]), using the human 
perception of the surrounding world applied to each specific 
context (Zadeh [11]). For example, some classical decision 
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making hard paradoxes can be softened and explained by means 
of a fuzzy approach (see, e.g., Montero [12]). In addition, 
Medicine has shown that emotions play a key role in human 
decision making (see Bechara et al. [13]) and that our brain is 
ready to represent information by means of gradable concepts 
(see Hsu et al. [14]). 

III. SOFT REASONNING, EXPLAINABILTIY AND COMPUTATIONAL 
ETHICS 

Of course we can always try an approach by means of 
Probability that might be good enough for certain purposes, but 
our brain naturally works with fuzzy uncertainty, and if we 
pursue an artificial intelligence tool, such a tool should be able 
to talk to human beings in the human language. The problem is 
that perhaps this well-known classical argument has been 
overwhelmed by some computational technologies that do not 
care so much about modeling, pursing prediction on the basis of 
sometimes massive recorded data, similarly to black boxes in 
decision making. Quite a number of fuzzy researchers have 
moved into this direction, and sometimes it looks like the final 
proof for any proposed approach is that its statistical behavior 
improves standard existing solutions, according to some ad hoc 
experiment. But such a statistical experimentation is usually a 
crisp experimentation, so it might be natural to expect that crisp 
quality measures will better fit for crisp outputs, that might be 
losing the natural gradation that human being perceives, as can 
be detected in our natural language. In some way, this is a 
consequence of an Artificial Intelligence focused on an 
automatic Decision Making instead of an argumentative 
Decision Support, where understanding the problem is part of 
the objective (taking a responsibility should require 
understanding).  

Explainability should be therefore a must in any Artificial 
Intelligence tool, and this field is a natural field for fuzzy 
modeling. Any procedure assumed by a human being should be 
understood by such a human being in order to take the legal 
responsibility of the consequences of the final action, and 
therefore such an explanation should be in general given in terms 
of natural language. Of course a number of apparently intelligent 
tools can be developed to make automatic decisions in somehow 
controlled frameworks, where no true intelligence is really 
needed. But we should be aware that human beings learn from 
the past, but we do not properly learn from past crisp data, but 
from all the conceptual representations of that past in our brain, 
that are influenced by our past life and culture, including 
additional contextual information, that might take different 
formats (words, discourses, images, feelings, etc.)  

But even an automatic (pseudo intelligent) decision maker 
will always need some small intelligence to detect that a 
particular circumstance might not fully fall within the designed 
expected standard. And this meta analysis might also require to 
establish some basic rules that limit action (e.g., some ethical 
principles). This is another natural field for fuzzy models, since 
principles should not be crisp in nature if we do not want to be 
blocked. Different principles will never by free of tension, and 
this tension between principles has to be wisely (case by case) 
managed, with prudence. Even Asimov’s famous “Three Laws 
of Robotics”, first introduced in I, Robot (1950), are not entirely 
crisp; their interpretation requires contextual reasoning, and the 

addition of a "Zeroth Law" (to avoid harming humanity) further 
underscores the inherent fuzziness of ethical decision-making. 
His “Three Laws of Robotics” might in principle appear as crisp 
consistent principles, but they eventually result in 
contradictions, and a careful thought will show they are not so 
crisp. I should acknowledge how complex I see to state ethical 
principles to limit potential objectives of any artificial 
intelligence, but I am even afraid that limiting the fields of 
application of artificial intelligence might not be a realistic 
option. In addition, the impact of a world partially ruled by 
artificial intelligences might affect human rights, a possibility 
not predicted in the 1948 Human Rights Declaration. 
Nevertheless, although we are quite late, something has to be 
urgently done, and reasoning with fuzzy concepts requires fuzzy 
logic.  

Beside the above two fields, computational explainabiltiy 
and computational ethics, which imply the construction of 
(fuzzy) consistent discourses as decision making aid 
methodologies (to be developed within any knowledge 
management field), we should acknowledge that many hot 
issues in current Science are based upon the analysis of non-
numerical data (texts, audios and videos). So, uncertainty 
models should move into this direction, where fuzziness is 
exceptionally positioned to treat as fuzzy what is or should be 
fuzzy. The main objective of a true Artificial Intelligence is to 
understand reality in order to help human being, and any human 
explanation is always context dependent. Our intelligent view of 
our past comes with a lot of knowledge about how the things 
work out. This was a main observation L.A. Zadeh use to refer 
when he explained how the idea of a fuzzy set came into his 
mind (see, e.g., Perry [15]). Zadeh initially guessed that Fuzzy 
Sets would exploit within social sciences, and I fully agree (see 
Montero [16]): the definitive success of fuzzy models will most 
probably come associated to the analysis of texts (see, e.g., 
Montero et al. [17]) and the analysis of current massive 
recording of all kind of data. For example, for the analysis of 
social network platforms. But always stressing knowledge 
management rather than modeling human acts (see Montero et 
al. [18]). Predicting without understanding is risky. We learned 
that in classical (experimental and therefore crisp) Science, the 
best theory is the one that gives best predictions. But when such 
predictions are not crisp, explainability becomes a key argument 
to assure understanding. Essentially, Fuzzy Sets is a knowledge 
representation tool and its natural framework in knowledge 
management. 

IV. FINAL COMMENTS 
Since 1965 the fuzzy model has evolved into several 

directions (see, e.g., Bustince et al. [19]), and will keep evolving 
in the future to allow knowledge management (see also Montero 
et al. [20]). This natural evolution implies an explanability close 
to human reasoning, which is mainly based upon the natural 
language. Of course we have to take advantage of each new 
computational tool, that might suggest a revision of classical 
definitions (see, e.g., Montero et al. [21]). But human language 
and human brain interact under a learning processes that is never 
closed, continuously searching for appropriate approaches, tools 
and solutions, depending on information, objectives and 
capabilities. Our language and our brain are far from being rigid 
crisply defined classification tools (see, e.g., Amo et al. [22]). 



26

Still, our language is consistent and very efficient despite its 
essential uncertainty, and human evolution proves that is has 
been the best solution to manage and communicate among 
human beings. At least meanwhile there was no Artificial 
Intelligence available tool, whose intensive presence might 
change the structure of our brain of some future generations. 

As a former president of both IFSA and EUSFLAT, I 
conclude with a call to the key scientific communities in fuzzy 
modeling—namely IFSA (including all its institutional 
members) and the IEEE Computational Intelligence Society—
to continue fostering collaboration between theoretical and 
applied researchers. It is imperative that we reaffirm the 
importance of fuzzy models in knowledge management, 
particularly within the emerging field of Computational Social 
Sciences. 

ACKNOWLEDGMENT 
This work has been funded by the Government of Spain, 

grant PID2021-122905NB-C21.  

REFERENCES 
[1] L.A. Zadeh, “Fuzzy sets.” Information and Control 8:338-353, 1965. 

DOI: https://doi.org/10.1016/S0019-9958(65)90241-X 
[2] L.A. Zadeh, “Is there a need for fuzzy logic?” Information Sciences 

178:2751–2779, 2008. DOI: https://doi.org/10.1016/j.ins.2008.02.012 
[3] J. Montero and M. Mendel, “Crisp Acts, Fuzzy Decisions.” In: S. Barro, 

A. Sobrino and A. Bugarin (eds), Advances in Fuzzy Logic, Universidad 
de Santiago de Compostela, Santiago de Compostela, Spain, 1998; pp. 
219-238. 

[4] A.N. Kolmogorov, Foundations of the theory of probability. New York, 
Chelsea Publishing Company, 1950 (English translation based upon the 
original 1933 German monograph appeared in Ergebnisse Der 
Mathematik and a Russian translation published in 1936). 

[5] J. Montero, “Comprehensive fuzziness,” Fuzzy Sets and Systems 20:79-
86, 1986. DOI: https://doi.org/10.1016/S0165-0114(86)80033-1 

[6] J. Montero, “Extensive fuzziness.” Fuzzy Sets and Systems 21:201-209, 
1987. DOI: https://doi.org/10.1016/0165-0114(87)90164-3 

[7] T.L. Fine, Theories of Probability. Academic Press, New York, 1973. 
[8] B. de Finetti,  Theory of Probability (2 vols.). Wiley, Chichester, 1974 

and 1975. 

[9] L. A. Zadeh, “Fuzzy logic = computing with words.” IEEE Transactions 
on Fuzzy Systems 4:103-111, 1996. DOI: 
https://doi.org/10.1109/91.493904 

[10] L.A. Zadeh, “Precisiated natural language (PNL).” AI magazine 25:74-
92, 2004. DOI: https://doi.org/10.1609/aimag.v25i3.1778 

[11] L.A. Zadeh, “A new direction in AI, toward a computational theory of 
perceptions”. AI Magazine 22:73-84, 2001. DOI: 
https://doi.org/10.1609/aimag.v22i1.1545 

[12] J. Montero, “The impact of fuzziness in social choice paradoxes.” Soft 
Computing 12:177-182, 2008. DOI: https://doi.org/10.1007/s00500-007-
0188-5 

[13] A. Bechara, H. Damasio and A.R. Damasio, “Role of the amygdala in 
decision-making.” Annals of the New York Academy of Sciences 
985:356–369, 2003. DOI: https://doi.org/10.1111/j.1749-
6632.2003.tb07094.x 

[14] M. Hsu, M. Bahtt, R. Adolfs, D. Tranel and C.F. Camarer, “Neural 
systems responding to degrees of uncertainty in human decision-making.” 
Science 310:1680-1683, 2004. DOI: 
https://doi.org/10.1126/science.1115327 

[15] T. S. Perry, “Lotfi A. Zadeh [fuzzy logic inventor biography].” IEEE 
Spectrum 32:32-35, 1995. https://doi.org/10.1109/6.387136 

[16] J. Montero, “Fuzzy logic and Science.” Studies in Fuzziness and Soft 
Computing 243:67-77, 2009. DOI: https://doi.org/10.1007/978-3-540-
93802-6_3 

[17] J. Montero, G. Rodríguez-Caderot and P. Romero, “Logic, mathematics 
and consistency in literature: searching for Don Quixote’s place.” 
Nonlinear Systems and Complexity 18, 221-245, 2017. DOI: 
https://doi.org/10.1007/978-3-319-46164-9_11 

[18] J. Montero, V. López and D. Gómez, “The role of fuzziness in decision 
making.” Studies in Fuzziness and Soft Computing, 215:337-349, 2007. 
DOI: https://doi.org/10.1007/978-3-540-71258-9_16 

[19] H. Bustince, E. Barrenechea, M. Pagola, J. Fernández, Z. Xu, B. Bedregal, 
J. Montero, H. Hagras, F. Herrera and B. De Baets, “A historical account 
of types of fuzzy sets and their relationships.” IEEE Transactions on 
Fuzzy Systems 24:179-194, 2016. DOI: 
http://doi.org/10.1109/TFUZZ.2015.2451692 

[20] J. Montero, H. Bustince, C. Franco, J.T. Rodríguez, D. Gómez, M. Pagola, 
J. Fernández and E. Barrenechea, “Paired structures and bipolar 
knowledge representation.” Knowledge-Based Systems 100:50-58, 2016. 
DOI: https://doi.org/10.1016/j.knosys.2016.02.003 

[21] J. Montero, R. González del Campo, L. Garmendia, D. Gómez, J.T. 
Rodríguez, “Computable aggregations.” Information Sciences: 460:439-
449, 2018. DOI: https://doi.org/10.1016/j.ins.2017.10.012 

[22] A. Amo, J. Montero, G. Biging and V. Cutello, “Fuzzy classification 
systems.” European Journal of Operational Research 156:495-507, 2004. 
DOI:  https://doi.org/10.1016/S0377-2217(03)00002-X 

 



27

60 Years of Fuzzy Sets and Systems and
30 Years of Genetic and Evolutionary Fuzzy

Systems: An Exciting Personal Journey
Oscar Cordón∗

∗Department of Computer Science and Artificial Intelligence (DECSAI) and
Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI). University of Granada, Spain

ocordon@decsai.ugr.es

Abstract—Since their introduction by Lotfi A. Zadeh in the
mid-1960s, fuzzy systems have proven to be a powerful paradigm
for modeling and reasoning under uncertainty. Initially, the
construction of fuzzy systems heavily relied on expert knowledge,
with fuzzy rules and membership functions manually defined
by human specialists. This approach emphasized linguistic mod-
eling of complex systems. However, in the 1990s, the field
witnessed a paradigm shift with the integration of machine
learning techniques, enabling fuzzy systems to be automatically
tuned or entirely learned from data. Methods such as fuzzy
clustering, least squares estimation, neural networks, and evo-
lutionary algorithms were increasingly employed to enhance the
accuracy, adaptability, and scalability of fuzzy models. Among
these, genetic and evolutionary fuzzy systems have emerged as
a particularly flexible and robust framework, combining the
interpretability of fuzzy logic with the optimization power of
evolutionary computation. This approach lies at the core of the
present contribution, revisiting its early developments and it
current state from my personal viewpoint.

Index Terms—fuzzy sets and systems, evolutionary algorithms,
genetic and evolutionary fuzzy systems.

I. INTRODUCTION

Fuzzy set theory, introduced by Lotfi A. Zadeh in 1965 [1],
extended classical set theory by allowing gradual membership,
offering a framework to handle imprecision and uncertainty.
This laid the foundation for fuzzy systems (FSs), which model
and control complex real-world processes that lack precise
mathematical descriptions [2]. A landmark application was
Mamdani’s fuzzy logic controller (FLC) in the 1970s [3],
which demonstrated how expert knowledge could be encoded
through intuitive linguistic rules. Since then, FSs have become
central to fields like control engineering, decision-making,
system modeling, and pattern recognition.

In their early development, FSs were predominantly
knowledge-based, with fuzzy rules and membership func-
tions manually crafted by human experts [4]. This approach
leveraged domain expertise to model system behavior in a
transparent and linguistically interpretable way. However, as
system complexity increased and expert knowledge became
harder to elicit or scale, the limitations of purely manual
design became evident. A significant milestone was the in-
troduction of the Takagi-Sugeno-Kang (TSK) fuzzy systems
in the mid-1980s [5], which enabled more precise modeling
by allowing rule consequents to be expressed as mathematical

functions, typically linear. This development bridged fuzzy
inference with data-driven modeling and paved the way for
a new generation of FSs that incorporate learning from data.
Techniques such as (fuzzy) clustering [6], neural networks
(leading to neuro-fuzzy systems) [7], and evolutionary al-
gorithms (EAs) emerged to automatically identify, optimize,
or adapt the structure and parameters of fuzzy models. In
particular, genetic and evolutionary fuzzy systems (GEFSs) [8]
apply evolutionary computation to optimize various aspects
of FSs —including rule bases, membership functions, and
even system architecture. GEFSs offer distinct advantages over
other learning approaches, such as global search capabilities,
flexibility in handling mixed or incomplete information, and
the ability to maintain interpretability through tailored fitness
functions. As a result, they have become a vital and active
area of research within computational intelligence.

This contribution is devoted to revisit the creation and
maturing of the GEFS research field from a personal per-
spective as the author played a role on its development. The
contributions of GEFSs to computational intelligence will
be reviewed and their current role in artificial intelligence
explored.

II. THE EARLY DAYS: 1991-95

The foundations of GEFSs were established in a very short
period of time. The key point was to consider an evolutionary
learning process to automate the design of the FS knowledge
base (KB) from data. The first proposals involved learning: i)
the data base (DB) by tuning a predefined definition [9]–[11];
ii) the linguistic rule base (RB) [12], [13]; and iii) the whole
KB [14], [15].

By that time, two classical evolutionary learning approaches
were considered to learn fuzzy rule bases: the Michigan ap-
proach, where a single rule was encoded in each chromosome
and the whole population becomes the final RB definition as
in [12], and the Pittsburgh approach where each chromosome
encoded a whole RB definition as in [13]–[15].

The first monograph devoted to GEFSs was written in
1995 [16]. It concentrated exclusively on two specific topics:
fuzzy classifier systems based on the Michigan approach and
RB learning through genetic programming.
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My first contact with the field was in March 1994. I had
started working on fuzzy sets and systems during summer
1992, after the third year of my master’s degree in computer
science. Paco Herrera had been my professor in my second and
third years. He proposed to a group of students to start a line
of research in FLC inference system design. We successfully
worked on the topic for two years, and the outcomes became
my final degree project. We managed to publish three papers in
different editions of the Spanish Fuzzy Conference (ESTYLF)
—the first one in 1993 when I had just finished the fourth
year of my degree—, two journal papers in BUSEFAL, and
a pioneering paper in Fuzzy Sets and Systems [17]. During
my degree project, I incorporated the genetic tuning method
proposed by Herrera et al. [11] to our FLC designs. Then, by
the beginning of 1995, we decided that my PhD dissertation,
also advised by Paco Herrera, would be devoted to GEFSs and
we started by writing the first survey on the topic in March
1995 reviewing the developments described in the current
section [18].

III. THE ESTABLISHMENT OF THE DISCIPLINE: 1996-2005

From those pioneering contributions, the interest of re-
searchers on the topic significantly increased and a huge
number of new proposals arose during the next decade. New
evolutionary tuning proposals were proposed, considering dif-
ferent fuzzy membership function shapes and coding schemes,
tuning of scaling functions, and especially incorporating in-
terpretability constrains [19]. New research directions were
created by the community including the proposal of new
evolutionary learning approaches, evolutionary rule selection
methods, GEFS designs for the interpretability-accuracy trade-
off, multiobjective GEFSs, GEFSs to build fuzzy inference
mechanisms, and GEFSs to learn extended fuzzy rule struc-
tures, among others.

The research group at the University of Granada made
several influential developments in the field in this period.
The first was the proposal of the iterative rule learning (IRL)
approach, specifically tailored for FSs. Unlike Michigan- and
Pittsburgh-style approaches, IRL decomposes the learning task
into successive steps, evolving and adding a single fuzzy
rule at a time. This strategy fosters interpretability, scala-
bility, and ease of knowledge incorporation. Both MOGUL
(Methodology to Obtain Genetic fuzzy rule-based systems
Under the iterative rule Learning approach) [20] and SLAVE
(Subtractive Learning Algorithm for Vague Environment) [21]
were its most representative algorithms. These systems have
since become seminal references in the GEFS literature and
have influenced numerous follow-up works in classification,
regression, and decision support. In fact, the proposal of
MOGUL was the core of my PhD dissertation, defended in
October 1997, becoming one of the first dissertations in the
area.

The author later contributed with a novel evolutionary
learning approach for GEFSs, the embedded KB learning.
It was based on an evolutionary DB learning process which
wraps a basic rule generation method. The EA derives the

DB definition by learning components such as scaling func-
tions/contexts, membership functions, and/or granularity pa-
rameters. A subsequent fuzzy rule generation method, which
must be simple and efficient, derives the RB for the DB
definition encoded in each chromosome, and some type of
error measure is used to validate the whole KB obtained. An
example of a GEFS based on this learning approach is [22].

The interpretability-accuracy trade-off played a significant
role in the advancement of the discipline, as the flexibility
of EAs were a superb capability to deal with the problem of
designing both accurate and interpretable fuzzy models [23]–
[25]. Multiobjective GEFSs [26] stood out as the most natural
approach for this task as both requirements are clearly in con-
flict, becoming a very prolific topic in the GEFS research area.
The multiobjective evolutionary learning/tuning process allows
us to jointly consider the optimization of different accuracy
and interpretability measures. The author also contributed to
the area with one of the first proposals to learn the whole KB
definition [27]. It jointly performed feature selection and fuzzy
partition granularity learning within an embedded learning
approach to obtain fuzzy classification systems with a good
tradeoff between classification ability and RB complexity.
He also introduced a tuning method for a real-world mobile
robotics application [28].

A decade after the initial approaches emerged, the field’s
main achievements were comprehensively consolidated in the
2001 monograph by Cordón, Herrera, Hoffmann, and Mag-
dalena [8]. This book is now a seminal reference in the field
and is a required reading for anyone interested in pursuing
research in this area. That is the reason why this book reports
such a high number of citations (almost 1600 in Google
Scholar) and has been adopted as a textbook in several parts
of the world. In 2004, the author also contributed to the
most cited survey in the area [29], with almost 1200 citations
in Google Scholar, reviewing the developments described in
this section. In the same year, he received an offer from
Jerry Mendel, Chair of the IEEE Computational Intelligence
Society’s Fuzzy Systems Technical Committee, to create a
Task Force on the topic. He founded the Genetic Fuzzy System
(later GEFS) Task Force in 2004, chairing it until 2007. This
resulted in the creation of the series of IEEE international
symposia on GEFSs, for which six editions were held from
the first one in Granada in 2005, two of them linked to
the IEEE Symposium Series on Computational Intelligence
(SSCI) multi-conference (GGEFS 2011 and GGEFS 2013).

IV. KILLER APPLICATIONS

Since their introduction in 1991, GEFSs have been suc-
cessfully applied to a range of complex real-world problems
where uncertainty, interpretability, and adaptability are crucial.
Several developments stand out as:

1) A multiobjective genetic tuning approach for a
bioaerosol detector optimizing accuracy (true/false pos-
itive rates) and interpretability (membership function
similarity) [30]. The resulting fuzzy model infers air
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safety in real time, addressing challenges like imbal-
anced data, time constraints, and false alarm reduction.

2) A genetic tuning method for a FLC in freight train speed
control enhancing tracking accuracy and ride smooth-
ness [31]. The approach enables offline customization
for different track profiles while minimizing mechanical
stress exerted on the couplers connecting the railcars.

3) A genetic Mamdani-type fuzzy classifier supporting
early dyslexia diagnosis using imprecise, low-quality,
graphical test data evaluated by experts [32]. Integrated
into a web-based tool, it aids parents in identifying
children who may require psychological assessment.

4) A tactical artificial intelligence (AI) framework devel-
oped by Thales Avionics and the U.S. Air Force for
air combat combining fuzzy rule reasoning with genetic
learning [33]. The system outperformed human pilots
in simulations, showing GEFS’s strength in real-time,
interpretable decision-making for autonomous defense
systems.

5) A many-objective type-2 GEFSs for field workforce
optimization handling uncertainty while jointly opti-
mizing multiple criteria [34]. Its impact includes £1M
in productivity gains, 2500 tons of CO2 saved, and
potential prevention of over 100 serious injuries in UK
roads.

In addition, the author has applied GEFSs to a wide
range of real-world problems in various research projects and
contracts. In the mid-1990s, he worked on the evolution-
ary identification of fuzzy models for electricity distribution
networks in Asturias (Spanish Ministry of Research project
with Hidroeléctrica del Cantábrico) [35]. He later developed
multi-criteria FLCs for large-building HVAC systems using
genetic algorithms (EU Joule project) [36]. By 2000, his work
expanded into novel GEFS applications including Internet
information retrieval [37], mobile robotics [28], and wind
energy production forecasting (EDP Renewables contract).

Notably, he has led pioneering research on GEFSs for au-
tomating forensic identification using skeletal data, in collabo-
ration with UGR’s Physical Anthropology Lab and Prof. Caro-
line Wilkinson (Liverpool John Moores University, UK) [38]–
[40]. Supported by multiple European and national projects
—including the C1M MEPROCS project—, this work led
to an international patent now exploited by the Panacea
Cooperative Research company and commercialized in Mexico
and South Africa. The system received the IFSA Award for
Outstanding Applications of Fuzzy Technology in 2011.

V. AND NOW WHAT?

More than three decades after their inception, GEFSs con-
tinue to play a vital role in the landscape of computational
intelligence. Their enduring relevance stems from a unique
combination of strengths: the ability to learn from data, main-
tain interpretability through linguistic rule-based models, and
adapt flexibly through multi-objective optimization scenarios.
As modern AI increasingly demands transparent, explainable,
and human-centric solutions —particularly in safety-critical

and ethically sensitive domains— GEFSs offer a compelling
alternative to black-box models [41].

GEFSs own a distinctive set of capabilities that address
some of the most pressing challenges in contemporary AI.
Unlike deep learning models, which often operate as opaque
black boxes, GEFSs produce rule-based models that are inher-
ently understandable by humans. This makes them especially
suitable for high-stakes decision-making in domains such as
healthcare, finance, and autonomous systems, where trans-
parency, trust, and accountability are critical. Furthermore,
GEFSs are data-efficient —they can generate useful models
even with limited or noisy data— thanks to the generalization
capabilities of fuzzy logic and the robust search mechanisms
of EAs.

Another important strength of GEFSs is their inherent
flexibility and modularity. Multiobjective GEFSs can balance
accuracy, complexity, and interpretability —something tradi-
tional machine learning methods struggle to address simultane-
ously. This is particularly important in real-world applications
where simpler, more interpretable models are often preferred
over marginal improvements in accuracy. GEFSs are also
well-suited for hybridization, allowing integration with neural
networks, ensemble learning, or probabilistic reasoning frame-
works, making them a strong candidate for neuro-symbolic AI
and explainable hybrid systems.

Moreover, the evolutionary component in GEFSs provides
a natural mechanism for structural and parametric learning,
enabling the system to automatically evolve fuzzy rules, mem-
bership functions, scaling functions, fuzzy inference systems,
and system architectures. This capacity is crucial for tasks
such as automated feature selection, system identification, and
adaptive control in non-stationary or evolving environments
—a key requirement in fields like robotics, smart manufactur-
ing, and autonomous decision-making.

Hence, GEFSs represent a principled and versatile approach
to AI that aligns well with emerging demands for explainabil-
ity, adaptability, robustness, and human-centric design. Their
foundational concepts remain not only valid but increasingly
relevant as trustworthy AI continues to move beyond per-
formance benchmarks toward real-world deployment, ethical
accountability, and societal trust [42].

VI. CONCLUSIONS

Over the years, GEFSs became a very popular topic be-
cause of its high applicability in a wide variety of domains.
Thousands of GEFS papers were published, special sessions
organized in conferences, special issues edited in international
journals, a specific series of bi-annual IEEE international
symposia held, and several books written and edited (with
a significant participation of the author in all those activi-
ties). Nowadays, several hundreds of GEFS researchers and
practitioners can be found all over the world. His early start
allowed the author to witness the historical development of
GEFSs and to make key contributions to it, which positioned
some of his publications as required readings for newcomers.
This contribution has revisited the early foundations of the
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field and its later developments from the personal viewpoint
of the author.

Far from being a legacy approach, GEFSs remain a foun-
dational and forward-looking methodology, well-positioned
to contribute to the next generation of intelligent systems.
Moreover, their synergy with recent advances in machine
learning, big data, and hybrid systems opens new avenues for
innovation, from interpretable deep neuro-fuzzy architectures
to automated knowledge extraction in dynamic environments.
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M. Botella, S. Damas, O. Cordón, Computer vision and soft computing
for automatic skull–face overlay in craniofacial superimposition, Foren-
sic Science International 245 (2014) 77–86.
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Abstract—Fuzzy theory has long served as a cornerstone for
modelling uncertainty and approximate reasoning in intelligent
systems. As artificial intelligence advances toward interpretability
and trustworthiness, the relevance of fuzzy systems is more
significant than ever. In this contribution, we reflect on six
decades of progress in fuzzy systems. We begin by revisiting
foundational milestones, including Zadeh’s seminal work on
fuzzy sets and Mamdani’s fuzzy controllers that revolutionized
control systems. We then examine the neuro-fuzzy era, highlight-
ing models like ANFIS and Takagi-Sugeno that blended data-
driven learning with fuzzy inference. The last few decades have
witnessed renewed momentum through integrations with deep
learning, as well as advancements in type-2 to intuitionistic fuzzy
frameworks. We place a particular focus on healthcare, where
fuzzy systems support interpretable diagnosis, early detection
of neurological disorders, and personalized decision support.
These applications showcase fuzzy logic’s strength in manag-
ing ambiguity in complex, high-stakes environments. Finally,
we outline current limitations and offer recommendations for
future research directions to further enhance the adaptability,
scalability, and transparency of fuzzy systems.

Index Terms—Fuzzy Logic, Neuro-Fuzzy Systems, Explainable
Fuzzy Neural Network, Healthcare Decision Support, Fuzzy Ma-
chine and Deep Learning, Type-2 Fuzzy Systems, Interpretability,
and Scalability.

I. INTRODUCTION

Imagine being asked a simple question: Is the water hot?
Although a thermometer might report a crisp numerical value,
a human being is more likely to say “somewhat hot” or “a bit
warm.” This type of answer—imprecise, graded, and grounded
in context—is how people naturally think and communicate.
Traditional computing systems, built on binary logic, have long
struggled to process this kind of soft, ambiguous information.
Fuzzy set theory, introduced by Lotfi A. Zadeh in 1965 [1],
was a bold response to this limitation—a mathematical frame-
work that claimed not everything in the world can be cleanly
divided into black and white. Fuzzy logic models the world as
we experience it: full of gray areas, uncertainties, and degrees

†Equal Contribution, ∗Corresponding Author.

of truth. By assigning a membership value between 0 and 1
to the inclusion of an element in a set, fuzzy systems made it
possible to reason about things like “tall people,” “fast cars,”
or “high risk” in a structured way. But beyond modelling
vagueness, fuzzy systems offer something even more powerful:
alignment with human reasoning.

In 1969 Ruspini published a seminal paper on fuzzy clus-
tering [2], integrating fuzzy sets with traditional unsupervised
learning. Bezdek developed the general case of the fuzzy c-
means model in 1973 [3], based on the well-known k-means
clustering algorithm. Many branches of this tree grew from
1969 to 1993, including fuzzy possibilistic clustering [4].

The practical relevance of fuzzy logic was cemented in 1975
when Mamdani and Assilian introduced the first fuzzy logic
controller, translating expert rules into a structured inference
system [5]. These early successes showcased fuzzy logic’s
ability to operationalize human reasoning in control tasks
without requiring precise mathematical models.

The ensuing decades saw fuzzy systems mature through
integration with learning algorithms, leading to the neuro-
fuzzy era. There were broadly two kinds of integration, viz. (i)
Neuro-fuzzy systems (NFS) and (ii) Fuzzy neural networks
(FNNs). While the NFS was a fuzzy system augmented
by a neural network to enhance its flexibility, speed, and
adaptability, the FNN was basically a neural network equipped
with the capability of handling fuzzy information [6].

In recent years, fuzzy systems have reemerged at the fore-
front of Artificial Intelligence (AI) research through integration
with deep learning and explainability. The convergence of
fuzzy logic with deep neural networks—termed fuzzy deep
learning (FDL)—has yielded models capable of handling
noisy, imbalanced, and uncertain data while retaining in-
terpretability [7]. Meanwhile, generalizations such as type-2
fuzzy sets [8], intuitionistic fuzzy sets [9], and hesitant fuzzy
sets [10] have improved uncertainty modelling by capturing
hesitation, ambiguity, and second-order vagueness.

The growing demand for responsible and interpretable AI
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has brought renewed attention to models that go beyond
black-box accuracy and instead offer transparency, trust, and
alignment with human reasoning [11]. In domains where
decisions bear ethical or life-critical consequences—such as
healthcare, law, and public policy—understanding how an
AI system arrives at its conclusion is as important as the
conclusion itself [12, 13]. Fuzzy logic, with its foundations in
approximate reasoning and linguistic interpretability, provides
a uniquely powerful framework for designing such human-
aligned systems.

Notably, the emerging convergence of fuzzy reasoning
with large-scale architectures such as large language models
(LLMs) presents exciting new avenues for designing systems
that are both capable and comprehensible [14]. Fuzzy logic
offers potential tools to quantify uncertainty, enhance control-
lability, and infuse linguistic nuance in LLMs—helping bridge
the gap between symbolic interpretability and sub-symbolic
learning [15]. Motivated by these trends and opportunities,
this commemorative note revisits foundational milestones,
highlights transformative contributions, and outlines future
challenges for fuzzy learning in a world increasingly shaped
by responsible, scalable, and trustworthy AI.

II. REVOLUTIONARY CONTRIBUTIONS OF FUZZY THEORY

Over the past 60 years, fuzzy set theory has evolved
from a framework for modeling vagueness into a widely ap-
plied paradigm for intelligent systems. Its development spans
three key phases: foundational advances in fuzzy logic and
control, the neuro-fuzzy era combining rule-based reasoning
with learning, and recent integrations with deep learning
and advanced uncertainty modeling. These innovations have
expanded fuzzy systems’ impact in critical domains such as
healthcare and explainable AI. This section reflects on these
interconnected phases of progress.

A. Early foundation

The inception of fuzzy set theory can be traced to Lotfi
Zadeh’s groundbreaking 1965 paper [1], which introduced
the idea of sets with gradual membership. This conceptual
leap allowed for a more natural representation of uncertainty
and imprecision, especially in systems influenced by human
language and perception. Soon after, fuzzy logic [16] was
developed as a formal framework for approximate reason-
ing—capable of capturing the ambiguity inherent in real-world
decision-making.

Building upon this foundation, Mamdani and Assilian [5]
in 1975 pioneered fuzzy control systems that translated expert
knowledge into interpretable IF-THEN rules. These Mamdani-
type controllers were instrumental in demonstrating the prac-
tical viability of fuzzy logic. By the 1980s and 1990s, fuzzy
control had become a dominant strategy in engineering appli-
cations, including automotive systems, consumer electronics,
and public transportation, particularly in Japan [17]. These
systems required no precise mathematical model of the plant,
making them robust and adaptable in uncertain environments.

B. Neuro-fuzzy era

The 1990s and early 2000s saw the fusion of fuzzy logic
with neural networks, leading to the development of neuro-
fuzzy systems that combined the interpretability of fuzzy in-
ference with the adaptability of machine learning. A landmark
development in NFS for control systems was the Takagi–
Sugeno–Kang (TSK) model [18], which introduced fuzzy rules
with quantitative outputs, greatly improving the modelling of
nonlinear processes. Soon after, Jang’s Adaptive Neuro-Fuzzy
Inference System (ANFIS) illustrated how neural network
techniques could be used to automatically tune the parameters
of a fuzzy inference system (FIS) [19]. These innovations
blended the interpretability of fuzzy rules with the adaptive
learning capabilities of neural networks, marking a shift from
expert-defined fuzzy systems to data-driven fuzzy modelling.

The earliest research on modelling a fuzzy neuron, in
perceptron, can be traced to Jim Keller in 1985 [20]. Studies
in FNNs subsequently explored classification [21, 22] and
rule generation [23, 24] paradigms. The well-known multi-
layer perceptron and Kohonen’s self-organizing network were
enhanced at the (i) input in terms of fuzzy linguistic func-
tions, low, medium, and high, while the (ii) output modeled
fuzzy membership between overlapping classes. The neuronal
aggregation operator was replaced by a fuzzy aggregator
for meaningful processing [25]. Researchers also used fuzzy
objective functions for error minimization at output.

This era signalled a shift from purely rule-based to data-
driven fuzzy modelling, making fuzzy systems more respon-
sive to real-world data. The neuro-fuzzy paradigm opened up
avenues in finance, speech recognition, pattern classification,
and many other domains [6].

C. Fuzzy systems in the age of AI and LLMs

In the last few years, fuzzy systems have once again become
central in the era of soft computing and hybrid intelligent
systems. The integration of fuzzy logic with deep learning
architectures—sometimes referred to as fuzzy deep learn-
ing—has enabled improved handling of uncertain, imbalanced,
or noisy data [7]. The hybrid systems are increasingly relevant
in mission-critical domains like medicine and autonomous
systems. There have also been significant advancements in
generalized fuzzy systems, including type-2 fuzzy sets, intu-
itionistic fuzzy sets, and hesitant fuzzy sets, which provide
more nuanced modelling of uncertainty and hesitation [26].
These extensions allow for better capturing of ambiguity in
both expert knowledge and data-driven scenarios.

Importantly, fuzzy systems have found a renewed purpose
in explainable AI (XAI), where their transparent rule struc-
tures offer an interpretable alternative to black-box models.
Applications in healthcare, smart environments, and decision
support systems continue to benefit from the robustness and
human-aligned reasoning capabilities of fuzzy logic [27].

Cutting-edge research has begun investigating the fuzzy
logic behaviour exhibited by LLMs. For example, Singh
[15] evaluated the extent to which LLMs are capable of
performing fuzzy reasoning tasks. More recently, Chen et al.
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[28] introduced a chaotic LLM-based educational question-
answering system, wherein fuzzy control mechanisms dynam-
ically fine-tune generation parameters using a Lee oscillator.
This approach demonstrated enhanced performance in domain-
specific educational applications.

These studies highlight an exciting frontier: integrat-
ing fuzzy reasoning directly within AI and LLMs to en-
hance uncertainty handling, and application-specific adapta-
tion—paving the way for more trustworthy and human-aligned
AI systems.

D. Applications in healthcare

Healthcare has emerged as one of the most critical and
promising application domains for fuzzy systems. Trustworthy
and interpretable systems are the need of the times. The
inherent uncertainty, imprecision, and complexity of medical
data make fuzzy logic an ideal tool for modelling, reasoning,
and decision support in clinical settings. From diagnosis to
prognosis and treatment planning, fuzzy systems offer a frame-
work that accommodates ambiguity and expert knowledge in
a transparent and interpretable manner [29].

One notable area of deployment has been in medical
diagnosis and disease classification, where FIS are used to
translate imprecise symptoms and lab values into actionable
clinical insights. For instance, FNNs have gained traction in
neuroimaging-based disease detection, particularly in complex
neurological disorders such as Alzheimer’s disease, where
early detection is hindered by heterogeneity in biomarkers
and symptom progression. Hybrid models combining fuzzy
logic with deep learning have been proposed for EEG and
MRI data analysis, offering both high accuracy and improved
interpretability [30].

Fuzzy logic is also playing a role in personalized medicine,
where patient-specific fuzzy rules help model heterogeneous
treatment responses. Recent work on intuitionistic and type-2
fuzzy systems enables better modelling of patient hesitancy,
treatment risk, and subjective assessment—factors crucial for
building trustworthy AI in healthcare. Additionally, in the
context of clinical decision support systems (CDSS), fuzzy
systems provide an interpretable backbone for supporting
complex decisions involving conflicting criteria, uncertain
diagnoses, and multiple treatment pathways. Their rule-based
structure makes them amenable to regulatory acceptance and
clinical validation, compared to opaque black-box AI models.

III. LIMITATIONS AND FUTURE RESEARCH DIRECTIONS

Despite significant advances in fuzzy systems and their
applications, several limitations remain for future investiga-
tion. We outline below a few key challenges and prospective
research directions, both general and domain-specific, that may
shape next generation of fuzzy system models.

A. Scalability and rule explosion

A persistent limitation of classical fuzzy systems lies in
their limited scalability to high-dimensional and large-scale
problems. As the number of input features increases, the

number of fuzzy rules tends to grow exponentially, resulting
in what is commonly known as the curse of dimensionality.
This increases computational burden and compromises one of
the key strengths of fuzzy systems—interpretability.

Future direction: Research should focus on adaptive rule
generation, sparse rule representations, and data-driven prun-
ing techniques. Incorporating dimensionality reduction and
neuro-symbolic optimization strategies could enable fuzzy sys-
tems to operate effectively in large-scale and high-dimensional
environments while preserving their transparency. One promis-
ing approach involves the integration of randomized neural
networks with FIS, which has shown potential in improving
scalability while retaining interpretability [29], [31].

B. Adaptability in healthcare applications

Many fuzzy systems in healthcare rely on static, expert-
defined rule bases, limiting their adaptability to diverse patient
populations and evolving clinical knowledge. This rigidity may
restrict clinical utility and long-term performance in dynamic
healthcare environment.

Future direction: The development of personalized, adap-
tive fuzzy models is critical. Future systems should integrate
online learning, real-time rule updating, and uncertainty mod-
elling to tailor decision support to individual patients while
maintaining interpretability and clinical relevance [30].

C. Integration with LLMs and deep architectures

Fuzzy logic has not been extensively integrated into large-
scale deep learning frameworks, especially in natural language
processing (NLP), LLMs and vision language models (VLMs).
The absence of a seamless integration mechanism hinders
its potential to improve explainability and trustworthiness in
black-box models [14].

Future direction: Embedding fuzzy reasoning components
within attention mechanisms or using fuzzy logic to quantify
uncertainty in token-level importance offers a promising path.
Hybrid fuzzy-transformer models could improve transparency
and control in advanced AI systems, particularly in safety-
critical applications. However the computational complexity,
of such integration, needs to be kept in mind.

IV. CONCLUSIONS

As fuzzy systems evolve at the intersection of interpretabil-
ity, uncertainty modelling, and data-centric learning, their role
in shaping the next generation of AI becomes increasingly crit-
ical. The integration of fuzzy logic with deep architectures, the
emergence of generalized frameworks, and their application to
high-stakes domains such as healthcare collectively illustrate a
paradigm shift—from isolated rule-based systems to adaptive,
explainable, and trustworthy intelligent models.

Yet, this progress also reveals challenges that must guide
future research. The need for scalable inference under high-
dimensionality, dynamic adaptation in non-stationary environ-
ments, and seamless compatibility with LLMs and VLMs
underscores the imperative for innovation in both theory and
applications. Especially in healthcare, where interpretability
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and human-aligned reasoning are non-negotiable, fuzzy sys-
tems offer a unique foundation to build AI that is not only
accurate but also transparent, reliable, and clinically mean-
ingful. Advancing this frontier demands synergistic efforts
across fuzzy theory, machine learning, and domain-specific
knowledge, aimed at developing systems that reason under
uncertainty while earning human trust. As AI faces increasing
demands for responsibility and robustness, fuzzy logic remains
an indispensable framework for shaping intelligent systems
that are both powerful and principled.
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Abstract—Society is undergoing a profound transformation,
particularly in the way information is understood and accessed.
Traditional search-based information retrieval is being replaced
by Artificial Intelligence (AI) systems that proactively deliver
responses tailored to users’ informational needs. This paradigm
shift has significantly impacted the design of information systems,
moving away from conventional approaches—whether based
on formal mathematical models or heuristic methods—towards
deep learning algorithms. Fuzzy logic, which has played a
fundamental role over the past six decades by enabling more
natural and human-like interaction through the management
of uncertainty and imprecision, now appears to be increasingly
supplanted by large language models. These models inherently
handle uncertainty, offering a new paradigm for user interac-
tion that challenges the traditional relevance of fuzzy systems.
However, despite their effectiveness in many areas, LLMs still
present challenges that raise concerns about their deployment in
sensitive domains, such as the management of biomedical data.
Additionally, they pose significant issues related to sustainability
and energy efficiency. These limitations prompt a reconsideration
of alternative approaches, in which fuzzy logic may once again
play a crucial role due to its capacity for handling uncertainty
in a more interpretable and resource-efficient manner.

Index Terms—Fuzzy logic, Computing with words, Large
language models, sustainability, uncertainty, anniversary

I. INTRODUCTION

For over six decades, fuzzy set theory—originally proposed
by Lotfi A. Zadeh in the 1960s—has played a pivotal role in
bridging the gap between human reasoning and computational
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systems [1]. Unlike classical binary logic, fuzzy logic allows
for reasoning under uncertainty and imprecision, making it
particularly well-suited for applications that require a more
human-like approach to decision-making.

Fuzzy sets theory has been successfully applied across a
wide range of disciplines and industries [2]–[4]. In industrial
automation, for instance, fuzzy controllers have been used to
regulate temperature, pressure, and speed in complex systems
where traditional control methods fall short. In consumer
electronics, fuzzy logic has enhanced the performance of
washing machines, air conditioners, and cameras by enabling
adaptive behavior based on vague or incomplete input data.

Fig. 1. Fuzzy Logic and LLMs (AI generated image).

In the domain of natural language processing (NLP), fuzzy
logic has contributed to tasks such as sentiment analysis
and semantic interpretation, where linguistic ambiguity is a
central challenge. It has also been employed in meteorological
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forecasting, where it helps model the inherent uncertainty in
weather predictions by incorporating imprecise variables like
"partly cloudy" or "chance of rain."

In recent decades, the need to manage vast amounts of
data and extract meaningful, actionable information has grown
exponentially. The advent of the Internet of Things (IoT) and
the proliferation of interconnected devices have led to an
unprecedented surge in data generation. These developments
have created a pressing demand for intelligent systems capable
of processing, interpreting, and delivering relevant insights to
end users in a comprehensible and context-aware manner [5].

One particularly illustrative and critical domain is bioin-
formatics—a field that inherently deals with massive volumes
of complex, heterogeneous, and often uncertain data. From
genomic sequencing to protein structure prediction and per-
sonalized medicine, bioinformatics applications require real-
time data processing and interpretation. The results must then
be communicated to researchers, clinicians, or patients in a
way that is both accurate and tailored to their specific needs
and levels of expertise [6].

In this context, fuzzy logic has proven to be a valuable
tool. Its ability to model imprecise concepts and reason under
uncertainty makes it especially suitable for biological systems,
where data is often noisy, incomplete, or ambiguous. For
example, fuzzy logic has been used to classify gene expression
patterns, assess disease risk levels, and support decision-
making in clinical diagnostics. Unlike rigid binary systems,
fuzzy models can accommodate the nuanced and probabilistic
nature of biological phenomena, offering more flexible and
interpretable outputs [7].

More recently, in the last three years, the emergence of gen-
erative artificial intelligence has marked a significant turning
point in the evolution of human–machine interaction. These
systems, capable of producing original content from training
data, have revolutionized the way machines communicate with
humans. Among the most impactful developments in this
domain are LLMs, which have demonstrated an unprecedented
ability to generate coherent, context-aware, and human-like
responses [8], [9].

A notable milestone in this trajectory is the performance
of GPT-4.5, which reportedly achieved a 73% success rate on
the Turing Test—a remarkable achievement that underscores
the growing indistinguishability between machine-generated
and human-generated language [10]. This level of fluency and
contextual understanding has made communication with ma-
chines nearly seamless, opening new possibilities in education,
customer service, healthcare, and beyond.

These technologies are increasingly perceived as natural
successors to earlier computational paradigms. They offer
faster, more scalable, and more user-friendly solutions for data
processing and human interaction [11]. As a result, traditional
systems—such as those based on fuzzy logic, and specially,
the computing with words technique [12]—are facing a crit-
ical juncture. While these earlier approaches were designed
to handle uncertainty and linguistic imprecision, they often
require significant effort in terms of design, rule definition,

and domain-specific tuning.
In contrast, LLMs can be deployed more rapidly and

adapted to a wide range of tasks with minimal customization.
This shift raises important questions for researchers and prac-
titioners: Is it still worthwhile to invest in the development of
interpretable, rule-based systems when generative models offer
such compelling alternatives? Or should these technologies
be seen as complementary, each suited to different types of
problems and constraints?

The answer may lie in a hybrid approach, where the
transparency and domain expertise embedded in fuzzy systems
are combined with the generative power and adaptability of
LLMs. Such integration could yield systems that are not only
intelligent and efficient but also trustworthy and explainable
[13].

II. FUZZY LOGIC VS. LLMS

To address the current situation, it is appropriate to conduct
a detailed analysis of the advantages and disadvantages of both
approaches: the application of fuzzy set theory—integrated
with paradigms such as computing with words, soft com-
puting, and perception-based theory—to compute data and
generate natural language text, and the use of large lan-
guage models for data processing and summarization. Table I
presents a comparative overview of their shared characteristics
and distinctions.

TABLE I
COMPARISON BETWEEN LLMS AND FUZZY LOGIC BASED SYSTEMS

Aspect LLMs Fuzzy Logic based
systems

Nature Based on deep neural
networks

Based on mathematical
theory of fuzzy sets

Uncertainty
Management

Implicit, through con-
text and probabilistic
modeling

Explicit, through de-
grees of membership

Interpretability Low High
Energy
Consumption

High Low

Typical Appli-
cations

Natural language
processing,
text generation,
conversational agents

Fuzzy control systems,
expert systems,
automation

Adaptability High, but prone to hal-
lucinations

Limited, but more pre-
dictable

Advantages of using Fuzzy Logic:
• Handling of Uncertainty and Vagueness: Fuzzy logic

excels in modeling linguistic variables such as “high tem-
perature,” “moderate risk,” or “slightly better,” which are
inherently vague and difficult to quantify using traditional
binary logic.

• Interpretability: Fuzzy systems are rule-based and thus
offer a high degree of interpretability.

• Adaptability: Fuzzy logic can be easily adapted to differ-
ent domains by modifying the rule base.

• Low Computational Cost: Compared to deep learning
models, fuzzy systems are lightweight and can be imple-
mented on devices with limited computational resources,
such as embedded systems or IoT devices.
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However, despite these strengths, fuzzy logic also presents
several limitations:

• Manual Rule Design: The creation of fuzzy rule sets often
requires expert knowledge and can be time-consuming,
especially in complex domains with many variables.

• Scalability Issues: As the number of input variables in-
creases, the number of rules grows exponentially, leading
to what is known as the “curse of dimensionality.”

Fig. 2. LLMs limitations (AI generated image).

In contrast, LLMs advantages are:
• Natural Language Understanding and Generation: LLMs

are capable of interpreting and generating text with a level
of fluency and coherence that closely resembles human
language.

• Versatility: Due to their training on extensive and diverse
corpora, LLMs can adapt to a wide range of tasks without
the need for task-specific retraining.

• Implicit Uncertainty Management: Although not explic-
itly designed for this purpose, LLMs handle ambiguity
and vague contexts with surprising effectiveness.

• Accessibility and Scalability: Their integration into dig-
ital platforms has democratized access to advanced lan-
guage processing tools, enabling widespread use across
various domains.

Limitations of LLMs [14]:
• Lack of Interpretability: LLMs function as black-box

models, making it difficult to understand how they ar-
rive at specific conclusions—particularly problematic in
critical fields such as medicine or law.

• Energy Consumption and Sustainability [15]: The train-
ing and deployment of LLMs require substantial compu-
tational resources, raising environmental and sustainabil-
ity concerns.

• Ethical and Privacy Risks: LLMs may generate biased
content, reinforce stereotypes, or mishandle sensitive
data, posing ethical and privacy-related challenges.

• Dependence on Historical Data: Their knowledge is con-
strained by the data used during training, which can lead
to outdated or contextually irrelevant outputs in novel or
rapidly evolving situations.

III. A CASE STUDY ON THE INTEGRATION OF FUZZY SET
THEORY AND LARGE LANGUAGE MODELS

In this study, we propose a hybrid system for monitoring
blood glucose levels in users through an IoT-based sensor
network [13]. The primary objective is to provide not only
medical professionals but also family members and the users
themselves with meaningful insights into their health habits.
This is achieved by processing the collected data and gen-
erating linguistic summaries that highlight the most relevant
events and trends in glucose measurements. Given the highly
sensitive nature of biomedical data, our analysis indicates that
full reliance on systems based solely on LLMs is currently not
advisable because of this technology limitations.

To address this, we have developed a hybrid architec-
ture that integrates expert knowledge modeled by healthcare
professionals using fuzzy set theory and Computing with
Words techniques. This expert-driven fuzzy model captures
the nuanced understanding of blood glucose dynamics and
feeds structured, interpretable knowledge into the AI system.
The integration enhances the system’s reliability and ensures
that the outputs are both medically sound and user-friendly.

This approach achieves several key objectives:
1) Expert-Guided Modeling: By embedding domain ex-

pertise into the system, we ensure interpretability and
trustworthiness in decision-making.

2) Reduction of AI Hallucinations: The structured fuzzy
framework constrains the generative model, reducing
the likelihood of producing inaccurate or misleading
outputs.

3) Improved Processing Efficiency: The fuzzy layer filters
and organizes data before it reaches the LLM, optimiz-
ing computational performance.

4) Enhanced User Interaction: The system delivers per-
sonalized, linguistically adapted summaries that improve
user engagement and comprehension.

The experimental validation of this system was conducted
in four distinct phases, as detailed in [13], demonstrating the
feasibility and effectiveness of combining fuzzy logic with
LLMs in real-world health monitoring scenarios:

• Phase 1:. Data Acquisition and System Architecture:
i) IoT Integration: Glucose data is collected using the
Freestyle Libre 3 sensor, which transmits data every 5
minutes via BLE/NFC to a smartphone app (xDrip+),
ii) Data Storage: The data is stored in a MongoDB
database and accessed via a RESTful API.
iii) Data Format: Only essential fields (timestamp, UTC
offset, and glucose value) are retained to ensure privacy.

• Phase 2:. Expert-Guided Dataset Generation:
i) Fuzzy Logic Modeling: Medical experts define key glu-
cose events (e.g., hypoglycemia, hyperglycemia, trends)
using fuzzy logic to label and segment the time series.
ii) Protoform Generation: Linguistic templates (proto-
forms) are created to describe glucose behavior using
fuzzy quantifiers and membership functions.
iii) Quality Rules: Summaries are designed to be concise,
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non-redundant, and temporally structured.
iv) Output: Each TS is paired with a human-like sum-
mary, forming a dataset for training.

• Phase 3. . Fine-Tuning of LLMs:
i) Model Selection: GPT-3.5, GPT-4o, and GPT-4o-mini
were fine-tuned using OpenAI’s API.
ii) Data Formatting: Training data is structured in JSONL
format with system, user, and assistant roles.

{
" messages " : [

{" r o l e " : " sys tem " , " c o n t e n t " :
" [ Domain ] , [ I n s t r u c t i o n ] ,
[ Knowledge ] " } ,

{" r o l e " : " u s e r " , " c o n t e n t " :
" [ TS d a t a ] " } ,

{" r o l e " : " a s s i s t a n t " , " c o n t e n t " :
" [ Expec ted summary ] " }

]
}

iii) Training Configuration: Hyperparameters such as
learning rate, batch size, and epochs were optimized to
avoid overfitting.

• Phase 4:. Prompt Engineering and Evaluation (using the
previously modeled knowledge with fuzzy logic):
i) Prompt Design: Prompts are structured into four parts:
a. Header: Introduces the task and TS data. b. Domain:
Describes the medical context and relevant patterns. c. In-
struction: Specifies the role (e.g., endocrinologist), output
length, and time interval. d. Knowledge: Defines glucose
ranges, time intervals, and quantifiers.
ii) Evaluation Framework (LLM-RawDMeth): A novel
evaluation method was developed with 11 metrics across
four dimensions: a. Information Quality: Accuracy, rel-
evance, recall, correctness, reproducibility. b. Thought
Capabilities: Understanding. c. Communication Qual-
ity: Clarity, accessibility, temporal dynamics. d. Content
Safety: Hallucinations, assumption verification.

IV. CONCLUSIONS

As demonstrated in the presented use case, the integration
of fuzzy set theory with LLMs offers a promising approach
to mitigating the limitations inherent in each of these tech-
nologies. This synergy is particularly valuable in systems that
require both natural language processing and robust uncer-
tainty management, especially when dealing with sensitive or
imprecise data.

By leveraging fuzzy logic to construct an expert knowl-
edge model that informs the LLM, we enhance the sys-
tem’s reliability, reduce the risk of hallucinations, and im-
prove the interpretability of the results. Conversely, the ap-
plication of advanced data-handling techniques on the LLM
side—such as fine-tuning and prompt engineering guided
by the fuzzy knowledge model—enables improvements in
processing speed, efficiency, and scalability.

Nevertheless, it is important to emphasize the issue of sus-
tainability. Despite the design effort required, dedicated sys-
tems based on fuzzy logic remain significantly more energy-
efficient than LLMs when solving many types of problems.
This consideration is especially relevant in contexts where
computational resources are limited or environmental impact
is a concern.

In conclusion, fuzzy logic continues to play a vital role
in technological solutions—not only in traditional control
systems, where it has long been established, but also as a
complementary component that enhances the performance and
trustworthiness of LLM-based systems. Its contribution is par-
ticularly valuable in domains where interpretability, reliability,
and human-centric reasoning are essential.
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Abstract—This note reports my opinion on the present of Fuzzy
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I. BACKDROP

Since its original introduction by Lotfi Zadeh, Fuzzy Logic
(FL), in its broad interpretation, fulfills a singular primary role:
the representation and processing of imprecise and gradual
information [1]. The primary utility of FL is to employ
linguistic terms as symbolic representations of imprecise and
gradual information, which are subsequently utilized, along-
side their associated semantics, for computational purposes
[2]. Therefore, FL is inherently suited to emulate human
reasoning and perception-based information processing [3].

Throughout the 60-year development of FL, the history of
Artificial Intelligence (AI) has undergone several paradigm
shifts [4], which can be delineated as: (i) Expert Systems; (ii)
Machine Learning; (iii) Deep Learning; (iv) General Intelli-
gence. Undoubtedly, FL was significantly influenced by these
paradigm shifts, particularly in the advancement of expert
systems (such as fuzzy rule-based systems) and machine
learning methodologies (including, but not limited to, fuzzy
clustering, fuzzy rule induction, and fuzzy decision trees). A
prominent attribute that substantiated FL methodologies was
the interpretability of the resultant models, currently referred
to as ante-hoc interpretability or model transparency [5].

The rapid advancements in Deep Learning (DL) present the
AI community with a significant dilemma: while DL models
demonstrate the capacity to address progressively sophisticated
tasks with efficacy, their intrinsic complexity renders their
internal mechanisms largely opaque and difficult to compre-
hend. This complex issue bears significant implications when
AI systems are deployed within high-risk environments. Nu-
merous countries, including those within the European Union,
are formulating specific regulations mandating AI systems to
furnish essential information that enables users to comprehend
their decision-making processes and ensure human oversight

Fig. 1: Trend of published papers on FL in the subject area of
Computer Science according to Scopus

[6]. Making AI explainable, initially intended as an academic
desideratum [7], eventually gained momentum under the name
of eXplainable AI (XAI) [8].

In summary, on one side, FL is a key methodology for
representing and processing human-centric information; on the
other side, there is a strong demand for methods that explain
AI decisions to humans. We could therefore expect FL to
quickly converge into the XAI mainstream. This has not
happened yet. For instance, the 2024 edition of the IJCAI
conference1, recognized as one of the premier conferences
in the field of Artificial Intelligence globally, featured 13
works focused on XAI and none concerning FL. Similarly,
the proceedings of ECAI 20242 comprise 22 papers on XAI,
contrasted with merely two on FL. Additionally, within the
proceedings of XAI-20243, an emerging conference series
specifically dedicated to XAI, only 3 papers addressed FL out
of a total of 97 published papers.4 Overall, the proportion of
published papers that include the term "fuzzy" in comparison
to the total number of papers published within the subject area
of Computer Science has been decreasing annually, a trend that
has become particularly pronounced following the advent of
DL around the year 2015, as illustrated in Fig. 1.

1https://www.ijcai.org/proceedings/2024/
2https://ebooks.iospress.nl/volume/ecai-2024-27th-european-conference-

on-artificial-intelligence-1924-october-2024-santiago-de-compostela-spain-
including-pais-2024

3https://xaiworldconference.com/2024/published-proceeding/
4In all the cases, a search of the words "fuzzy" and "explainab*" or "XAI"

has been performed on the titles.
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II. SELF-CRITICISM

Zadeh encountered numerous challenges in the dissemina-
tion of FL, which he persistently addressed and, to some
extent, overcame through relentless advocacy and owing
to demonstrable industrial applications evident in certain
Japanese achievements.5 The primary reason for these chal-
lenges appears to be cultural: Fuzzy Logic represented a
revolutionary shift from the established understanding of what
Logic ought to be, resulting in its challenging path to ac-
ceptance. My opinion is that this cultural resistance is still
present.

Several underlying causes for this resistance are examined
in a thought-provoking opinion paper by Hüllermeier, who
presents compelling criticisms of the research in FL within
the domain of Machine Learning (ML), which can be readily
extended to the context of XAI [9]. Fundamentally, it is
observed that there is an absence of rigorous practices, coupled
with an aversion to contemporary AI methodologies. This
situation causes publications on FL in ML to trail behind those
presented in prominent academic venues. (See also my note
at WILF 2019 [10].)

The domain of interpretability in FL modeling method-
ologies is not exempt from criticism. These criticisms are
examined in a more systematic manner in an outstanding
narrative review by Pickering et al., who identified several
potential reasons why the fuzzy modeling field remains absent
from the mainstream discourse of interpretable ML, and by
extension, XAI [11].

In both instances, the central message is that FL encounters
challenges in extending its visibility beyond its own com-
munity. Nonetheless, FL should not be misconstrued as a
religion: individuals should not be converted to adopt FL.
Instead, the theoretical merits of FL should naturally surface,
and its benefits in AI and XAI ought to be elucidated. To
facilitate this occurrence, research in FL must be predicated
upon indubitable foundations, with scholarly output adhering
to the stringent standards requisite for dissemination in premier
AI publications. Nonetheless, this necessitates a cultural trans-
formation within the FL community, entailing a consensual and
systematic body of theories, a standardized nomenclature, and
a unified protocol for scientific advancement.

This self-criticism should not be interpreted as an objection
to the FL community; rather, these are issues that naturally
arise during the emergence of a new scientific field, and sixty
years is not an extensive period for a discipline that challenges
the fundamental principles of logic and uncertainty. However,
as advancements in AI are progressing at an accelerated rate,
the possibility that FL may not endure in the long term (except
for some isolated groups) is significant. In my view, by directly
confronting these challenges, the community can identify the
appropriate pathway to maintain parity with other AI-related
disciplines.

5https://time.com/archive/6703481/technology-time-for-some-fuzzy-
thinking/

The field of XAI is relatively nascent, having gained promi-
nence following the extensive adoption of DL methodologies.
Due to its emergent status, XAI also contains inherent lim-
itations. Freiesleben and König, in a recent paper, identified
several critical issues regarding the current state of research
on XAI [12]. Their work highlights various misconceptions
within XAI that merit examination through the perspective of
FL. Among these, a particularly pertinent issue for the FL
community is the notion that XAI systems should give people
explanations they find intuitive.

This misconception draws attention to the distinction be-
tween explanation and justification—a difference that is
frequently disregarded. An explanation conveys the actual
grounds for a decision, whereas justifications are just "good"
reasons, i.e., reasons that make the decision just, thereby
persuading individuals to place their trust in the model (for
further discussion, refer to Freiesleben and König [12]). An
illustrative example is the employment of a surrogate model
that "explains" a black box by excluding sensitive features
(e.g., gender or ethnicity) from the feature set. Consequently,
we obtain a non-discriminatory explanation of the decision of
a black box, which might have derived its output grounded in
the omitted features.

FL models, which are frequently characterized by two
distinct formal layers—namely, the symbolic layer encom-
passing linguistic terms, rules, etc., and the semantic layer
comprising membership functions, operators, and other related
elements—serve as potent instruments for elucidating model
behavior in a manner that users can comprehend, assuming this
is the intention (refer to other XAI misconceptions highlighted
by Freiesleben and König). Nonetheless, the propensity to
obfuscate intricate internal mechanisms with overly simplistic
linguistic representations poses the risk of yielding outputs
that merely justify rather than genuinely explain the model’s
results.

For instance, the term "fuzzy rules" typically refers to sym-
bolic structures that fundamentally operate differently from
classical implicative rules.6 The primary distinction between
these two types of rules lies in their truth values when the
antecedent is false: fuzzy rules are evaluated as false, whereas
classical rules are considered true. (There exist various inter-
pretations of fuzzy rules; however, this discussion focuses on
the Mamdani interpretation, which is predominantly utilized in
the field of fuzzy logic literature.) Such differences necessitate
alternative methods for the aggregation of rules and the process
of inference.

We employ the term "fuzzy rule" due to its intuitive appeal,
as it allows us to articulate the model within this formal
structure (after all, who cares of a rule when its antecedent is
false?). Nevertheless, in the broader context of the AI domain,
the term "rule" carries a different connotation, being deeply
rooted in Logic, which forms the foundation of conventional
education. Consequently, any attempt to elucidate a FL model
utilizing fuzzy rules often culminates in a mere justification,

6I am co-author of a book that uses this nomenclature.
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thereby obscuring the inherent case-based reasoning mecha-
nism.

In addition to fuzzy rules, other concepts intrinsic to FL may
reveal the issue of justification as explanation. For instance,
what is the interpretation of the "sharing degree" in fuzzy clus-
tering? What is the significance of defuzzification, σ-count,
strong fuzzy partition, rule weights, or some exotic t-norm/t-
conorm pair? While these concepts indeed have definitions,
a critical question persists as to whether their interpretations
can be translated into a process of explanation that functions
beyond mere justification.

III. WISHES FOR THE FUTURE

A. Education

Students are frequently instructed in FL by initially intro-
ducing the definition of a fuzzy set, followed sequentially
by fuzzy set operators, fuzzy rules, systems based on fuzzy
rules, and subsequently fuzzy machine learning, among other
topics. Numerous textbooks caution students regarding the
limitless range of potential membership functions, t-norms,
inference operators, and similar elements, as they depend on
the application. It is my contention that this approach is
inadequate for imparting the essential theory of FL, as it fails
to address foundational principles adequately.

An educational framework for FL should commence with
foundational concepts of graduality, corresponding to par-
tial orders, and granularity, aligning with Possibility Theory.
This framework should systematically develop the theoretical
constructs and methodologies in a consistent manner. The
semantics of fuzzy sets ought to be delineated through per-
missible operations, ensuring that the core knowledge remains
straightforward and efficacious. Introduction of fuzzy models
should be deferred, analogous to the later introduction of
Bayesian Networks in the broader discipline of what may be
termed "Probabilistic Logic".

Adopting a progressive methodology such as this will
establish indisputable definitions of concepts and properties
that remain beyond reproach, by definition, particularly outside
the FL community. Students may discern that some of these
concepts and properties are either analogous to those in non-
FL domains or they genuinely present a novel perspective that
can contribute significant value within AI and may, therefore,
justifiably become integrated into the mainstream discourse of
AI and XAI.

Numerous publications support this perspective, as evi-
denced by works such as Trillas and Eciolaza [13], Dubois
and Prade [14], and Kruse et al. [15], among others. However,
it is crucial to integrate these contributions into a coherent and
comprehensive syllabus.

B. Software

Software serves as the principal catalyst for advancements
in computational fields such as artificial intelligence. The
advancement of AI in recent years has been significantly
facilitated by software tools, including Weka, Python with
its extensive library ecosystem, CUDA, and other specialized

software. Within the domain of FL, notable efforts have
been made to document software development contributions
towards its progress, exemplified by the initiatives of the Task
Force on Fuzzy Systems Software of IEEE CIS.7

The extensive collection of software compiled by the task
force highlights the pressing need to underpin theoretical
methodologies with practical implementations. Nonetheless,
the majority of this software is tailored to specific fuzzy
models, particularly fuzzy rule-based systems, whereas a more
comprehensive framework is necessary to potentially construct
such fuzzy rule-based systems.

The value of such a framework is multifaceted. Firstly, it
facilitates the establishment of a common language, which
can be utilized in educational contexts. It also empowers
students to construct systems de novo, gaining comprehension
and mastery over each component, evaluating alternatives, and
pioneering new forms of systems. Secondly, a general software
framework serves as a valuable asset in research by enabling
reproducibility, interoperability, and the standardization of op-
erations, thus supporting equitable comparison among models.
By being constructed on foundational building blocks, the
framework may enable the integration of theoretically robust
concepts that are infrequently employed in modeling, such as
relational equations, gradual numbers, etc.

C. Research protocols

To facilitate the integration of FL into mainstream research
within the fields of XAI and AI, it is imperative to consider
several crucial elements.

1) Motivation: A frequent issue in FL literature is the in-
sufficient articulation of a compelling rationale for employing
FL. However, a cultural bias persists within the AI community,
wherein FL is often viewed with skepticism. It is therefore
incumbent upon FL researchers to undertake additional ef-
forts in demonstrating the unique contribution of FL to AI
methodologies. This involves illustrating how FL facilitates
features that are either unattainable or implemented in a less
effective or efficient manner by alternative methodologies.
Addressing this necessitates rigorous theoretical analysis of
the proposed methods, alongside comprehensive experimental
validation using both synthetic and real real-world datasets
that extend beyond conventional public benchmarks.

2) Reproducibility: A significant challenge currently con-
fronting AI is the phenomenon referred to as reproducibility
crisis [16], which extends to all scientific disciplines in which
AI is employed [17]. The primary catalyst for this crisis
is the notably elevated adaptability of AI models, coupled
with an overall deficiency of rigor in their conceptualization.
Moreover, numerous AI models exhibit heightened sensitivity
to precise coding, stochastic initialization, and hyperparameter
configurations.

These issues may similarly impact FL models. As repro-
ducibility serves as a cornerstone of scientific progress, it is
imperative to endeavor to mitigate the risk of disseminating

7https://sci2s.ugr.es/TF-FSS
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results that lack scientific validity. This objective can be
achieved by implementing and mandating protocols that ensure
the reproducibility of results and methods, in line with the
standards adopted by other scholarly communities.8

Prior to the implementation of any policy, however, it
is imperative that the ethos of reproducibility is ingrained
within the community. This necessitates the establishment of
a unified nomenclature and conceptual framework, coupled
with rigorous mandates for the comprehensive documentation
of methodologies and the institution of standardized validation
protocols for experimental outcomes.

D. Beyond rules

Contemporary research in AI is progressing toward inno-
vative forms of data representation, which are increasingly
prevalent in information systems. At present, unstructured or
semi-structured textual data, images (including hyper-spectral
or three-dimensional), and graphs are ubiquitous. Furthermore,
emerging or revitalized ML tasks, such as reinforcement learn-
ing, transfer learning, and generative modeling, are gaining
prominence. In the domain of XAI, particularly, causal mod-
eling has emerged as an essential methodology for furnishing
robust explanations.

Frequently, complex data and tasks are managed by opaque
models, which yield accurate yet potentially irreproducible
results in high-stakes application contexts. In such scenarios,
I align with Rudin’s perspective, advocating against attempts
to elucidate black-box models, and instead supporting the
preference for interpretable models [18]. FL can significantly
contribute to the development of interpretable models for
critical applications, yet it is imperative to remain current with
the advancements in related research domains regarding data
and tasks. Nonetheless, this does not warrant indiscriminate
fuzzification; motivation and reproducibility should consis-
tently be our guiding principles.

IV. TAKE-HOME MESSAGE

The advent of General Artificial Intelligence is exerting
a considerable impact on scientific research and society as
a whole. While this development presents substantial oppor-
tunities for advancements in scientific inquiry, it also poses
existential threats, potentially leading to the replacement of
science with pseudoscience. XAI transcends being merely a
methodological approach; it embodies a commitment to main-
taining oversight over AI technologies, ensuring that human-
centric considerations remain at the forefront of decision-
making processes. The future of FL lies in this domain; if
venturing beyond established comfort zones is necessitated,
preparedness is imperative.
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Abstract—A plea for possibility theory as a major spin-off from
fuzzy set theory, emphasizing its representation power, and the
variety of its applications.

I. INTRODUCTION

For the 50th anniversary of fuzzy sets, we wrote a series
of articles [1] covering the history (1-2), the legacy (3, 8) of
the idea of fuzzy sets, as well as some aspects of possibility
theory (4-5) and some relationships with other information
processing settings (6-7).

As recalled in [1]-(3), membership grades may refer to
an idea of distance (e.g., as in fuzzy clustering), or may be
related to preference when expressing degrees of satisfaction,
or yet may express degrees of plausibility when related to
uncertainty. As pointed out very early by Zadeh [2] fuzzy sets
may represent possibility distributions, which are the basic
building block of possibility theory [3].

Until now possibility theory has mainly addressed the
uncertainty semantics (interpreting possibility as plausibility
and necessity as certainty), and to a lesser extent, the model-
ing of preferences (interpreting possibility as feasibility, and
necessity as priority).

II. POSSIBILITY THEORY: MODELING EPISTEMIC
UNCERTAINTY AND PREFERENCES

The first elements of possibility theory, pioneered in the
late 1940’s by the theory of potential surprise of the English
economist G. L. S. Shackle, were independently reinvented in
the late 1970’s by L. A. Zadeh who focused on the idea of
graded possibility in relation with the modeling of linguistic
information.

Possibility theory offers a particularly rich setting for the
representation of incomplete information, thanks to the ex-
istence of four set functions that can be associated to a
possibility distribution: a pair made of a weak possibility
measure and its dual strong necessity measure, together with
a pair made of a strong possibility function and its dual weak
necessity function.

Possibility measure axioms use the maximum operation
instead of the sum for probabilities. Thus, possibility theory
may be fully qualitative or may have a quantitative flavor
depending on the scale used.

Qualitative possibility theory is instrumental when devel-
oping possibilistic logic and non-monotonic reasoning [4].

Conditioning is then based on minimum rather than product
[3]. It is also useful in decision under uncertainty where qual-
itative counterparts of the expected utility criterion have been
proposed and axiomatized in the style of Savage framework
of acts. These qualitative criteria based on min and max
operations can be refined by using leximin and leximax orders
[5]. Such refined criteria then satisfy the same properties as
expected utility (which uses sum and product).

In the quantitative setting, possibility and necessity mea-
sures offer the simplest non trivial system of upper and lower
probabilities and represent imprecise consonant information
(while probability functions are tailored to precise and scat-
tered data). Quantitative possibility theory is then useful for
some aspects of statistical reasoning; for instance possibility
distributions are useful to describe the dispersion of probability
measures [6]. From another point of view, likelihood functions
can be modeled by possibility distributions. See [7] for details.
Numerical possibility theory has proved instrumental in signal
processing [8], especially kernel-based approaches where it
avoids the choice of a precise kernel. Viewed as modeling a
convex set of probability functions, a possibility distribution
may look poorly expressive as it models probability intervals
of the form [a, 1] or [0, b] only. More expressive representa-
tions (still computationally simple) can be obtained using pairs
of possibility distributions [9].

It is thus clear that possibility theory then stands halfway
between logical and probabilistic representation frameworks.
This fact is all the clearer as, besides possibilistic logic, there
are graphical representations of possibility distributions akin
to Bayesian networks [10], where conditioning is based on
minimum or on product. Possibility theory is actually the
proper setting for handling epistemic uncertainty, and dealing
with incomplete information.

Finally, in the qualitative setting, it has been shown that
general monotonic set-functions, known as capacities or fuzzy
measures, can be interpreted as families of possibility mea-
sures [11], which enable strong similarities between qualitative
capacities and imprecise probabilities as well as belief func-
tions to be laid bare. These ideas have been applied to the
modeling of pessimism and optimism in qualitative decision
criteria (such as Sugeno integrals), as well as information
fusion [12].

Possibility theory has seen a wide range of applications
over the last thirty years [13], including representation of,



44

and reasoning with, fuzzy rules, non-classical logics, decision
under uncertainty, preference and desire modeling, risk anal-
ysis, databases, or machine learning. Other applications deal
with data and expert knowledge fusion, constraint propagation,
computations with imprecise or fuzzy quantities, scheduling,
spatial interpolation (kriging), data reconciliation, and so on
(see for [14] for references). The reader is referred to [15] for
an extensive and recent review of possibility theory develop-
ments in reasoning, statistics and learning in an AI perspective.
More recently the paper [4] offers an overview of 40 years of
research in possibilistic logic and related logics.

III. POSSIBILITY THEORY: A TOOL FOR A SOBER AI?

For many people there is an impassable gap between the
AI that developed expert rules systems and the AI focused on
machine learning based on neural networks. Such a claim is
highly debatable since we can move from a min-max matrix
calculus encoding uncertain rules in parallel and in cascade
to a neural net [15], [16]. Such a starting point has led
recently to an impressive, comprehensive, possibilistic neuro-
symbolic approach which propagates possibility distributions
(rather than probility distributions) [17].

This is part of a general concern to develop a more
qualitative (and perhaps more physiologically plausible) view
of neural nets [18]. Indeed McCulloch and Pitts’ numerical
formal neurons are perhaps worth questioning. Thus recently,
Strauss, Rico et al. [19] have proposed a formal neuron made
of the sum of four weighted maximum operations.

More qualitative models are unlikely to perform as well
as sum-and-product neuro-probabilistic systems. However, if
sufficiently developed, they might reach reasonably good per-
formance acceptable in some daily life applications, with a
lower computational cost. This is why studying max-min,
max-sum, or max-min-product systems is worth of interest
(without even speaking of representational power).

Moreover, max-pooling and min-pooling are well-known
layers in convolutional neural networks. No need to say that
this kind of operations are similar to the computation of the
weak possibility and the strong possibility function from a
possibility distribution. Recent works [20] has shown their
good behavior for handling embeddings as epistemic states.

IV. CONCLUSION

Possibility theory deserves attention as a representational
and a computational tool to be further developed for un-
certainty handling in AI and other applications. Until now
possibility theory has only been developed by a small number
of researchers. We hope that more scholars will use it in
the future, due to its versatility and its low computational
complexity.
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Abstract—Evolving fuzzy systems build and adapt fuzzy mod-
els—such as predictors and controllers—by incrementally updat-
ing their rule-base structure from data streams. On the occasion
of the 60-year anniversary of fuzzy set theory, commemorated
during the Fuzz-IEEE 2025 event, this brief paper revisits the
historical development and core contributions of classical fuzzy
and adaptive modeling and control frameworks. It then highlights
the emergence and significance of evolving intelligent systems
in fuzzy modeling and control, emphasizing their advantages in
handling nonstationary environments. Key challenges and future
directions are discussed, including safety, interpretability, and
principled structural evolution.

Index Terms—Fuzzy systems, adaptive control, evolving mod-
els, rule-based learning.

I. INTRODUCTION

Research in fuzzy modeling, control, and applications has
grown rapidly since Zadeh’s seminal work in 1965 [1],
evolving into a vast and multifaceted field. It includes key
theoretical advances and a wide range of applications in engi-
neering, industry, mechatronics, computer science, information
systems, and beyond. This body of work has offered valuable
opportunities to refine foundational concepts and increase
the visibility of practical implementations. The established
theoretical results, along with numerous successful applica-
tions—highlighting performance, smoothness, robustness, and
interpretability in support of human decision-making—stand
as evidence of the widespread acceptance and practical viabil-
ity of fuzzy models and fuzzy control systems.

Despite evolving attitudes toward fuzzy systems, particu-
larly within the academic community, debates have persisted
between proponents and critics. As summarized by Belohlavek
[2]: (i) Lindley (1987) argued that anything achievable through
fuzzy logic, belief functions, upper and lower probabilities, or
other alternatives to probability could be done better using
probability theory; (ii) Cheeseman (1986) similarly claimed
that everything achievable with fuzzy logic is better addressed
probabilistically; and (iii) in 1972, Kalman—one of the pio-
neers of modern system modeling and control—asserted that
fuzzy logic was pragmatically unconvincing due to the lack of
evidence it could solve important problems.

Interestingly, Kosko [3] developed and compared a fuzzy
control system with a Kalman filter-based control system
for real-time target tracking. Simulation results suggested

that, in many cases, fuzzy controllers may provide a ro-
bust and computationally efficient alternative to both linear
and nonlinear (extended) Kalman filter approaches in real-
time control—even when accurate input-output differential
or difference equation models are available. Following this
work—and even throughout the late 1980s, 1990s, and early
2000s—a growing number of studies confirmed similar find-
ings, demonstrating that fuzzy control methods can offer
competitive or superior performance, along with stability and
robustness, in a variety of real-time, nonlinear, and uncertain
environments.

In the preface of [4], Zadeh wrote: “What is not fully
recognized, however, is that fuzzy control and conventional
crisp control are, for the most part, complementary rather
than competitive. Thus, fuzzy control is rule-based whereas
conventional control is differential-equation-based; fuzzy con-
trol is task-oriented whereas conventional control is set-point-
oriented; and conventional control is model-based whereas, in
the case of fuzzy control, what suffices is a linguistic, rule-
based description of the model. Today we see more clearly
that fundamentally, conventional control is measurement-based
whereas fuzzy control is perception-based. In this sense,
the role model for fuzzy control is the remarkable human
capability to perform a wide variety of tasks without any
measurements and any computations. A canonical example of
such tasks is that of driving a car in city traffic. Classical
control provides no methods for automation of tasks of this
type.” This perspective highlights the foundational role of
fuzzy sets in representing expert knowledge and supporting
intelligent, flexible control strategies.

In recent years, the integration of machine learning and
knowledge discovery techniques into fuzzy models and con-
trollers has further advanced the expert-based paradigm of
the 1990s. This progress has led to the development of novel
and adaptive approaches that merge rule-based reasoning with
data-driven learning and model-based control design. In paral-
lel, formal tools from optimization and dynamical systems the-
ory—such as regularization, constrained loss functions, Lya-
punov stability analysis, linear matrix inequalities, H-infinity
control, model predictive control, sector nonlinearity, and sum-
of-squares programming—have been increasingly adopted to
provide theoretical guarantees [5]–[7], further enriching fuzzy
control with mathematical rigor and strengthening its align-
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ment with contemporary control theories.
Current developments in fuzzy modeling and control have

focused on strengthening their capacity to manage complexity,
uncertainty, and imprecision in dynamic environments. Em-
phasis has shifted toward greater autonomy in model con-
struction and adaptation, with algorithms capable of extracting
and updating fuzzy rules, membership functions, and locally
valid equations directly from data. These approaches signifi-
cantly reduce, or even eliminate, the dependence on manual
expert input, allowing more scalable and adaptive solutions
aligned with current trends in modeling large datasets and
data streams [7]. Furthermore, the integration of fuzzy systems
with machine learning and data science has led to hybrid
frameworks that support online learning, generalization, and
better integration with real-world applications.

The next sections revisit the area of evolving fuzzy sys-
tems—an established branch of fuzzy modeling and control
that focuses on systems capable of incrementally adapting
their structure, functionality, and knowledge in response to
nonstationary data streams [7]–[11]. The discussion begins
with a brief overview of classical paradigms for modeling
and controlling complex systems, followed by the notion of
adaptive modeling and control. It then highlights the key ideas
and contributions that evolving fuzzy systems have brought to
the broader field over the past decade.

II. MODELING AND CONTROL OF COMPLEX SYSTEMS

The modeling and design of control systems for complex
dynamical processes remain difficult and challenging tasks
[12], [13]. While a rich and well-established body of theory
exists for linear systems, the same level of maturity has not
yet been achieved for nonlinear control. In most cases, ana-
lytic solutions to nonlinear control problems are unavailable,
requiring approximate or heuristic approaches.

Conventional design methods for complex nonlinear sys-
tems are typically model-based and often laborious, involving
subjective steps informed by prior experience or simulation-
based tuning. A common practice is to approximate a nonlin-
ear control law using multiple linear controllers, each designed
for a specific region of the operating space. In each region,
the system dynamics is assumed to be approximately linear.
This partition-based (or granular) approach becomes necessary
when a single linear model fails to adequately represent the
system’s global behavior. The nonlinear control strategy is
then synthesized by switching or interpolating among the local
controllers based on the current state of the system. However,
this approach is inherently sensitive to modeling inaccuracies.
Any significant mismatch between the model and the actual
plant, or the presence of unmodeled and time-varying (evolv-
ing) dynamics, can severely degrade performance and even
lead to instability. Importantly, such limitations may persist
despite rigorous offline controller design.

To ensure robust performance, controllers are generally
expected to tolerate a certain degree of modeling uncertainty
and external disturbances [14]. However, robustness is often
achieved at the expense of optimal closed-loop performance. A

promising alternative lies in control systems capable of learn-
ing from experience in real time. By continuously adapting to
previously unmodeled and time-varying (evolving) dynamics,
these systems offer the potential to reconcile robustness with
high performance—ultimately motivating the development of
evolving control strategies.

A. Classical Adaptive Control and Its Limitations

Adaptive modeling and control systems adjust their param-
eters in response to changes in the dynamical behavior of the
controlled process. The concept originated in the 1950s [15]
and was soon formalized within the framework of stochastic
systems by Feldbaum [16], whose work is widely regarded as
the first theoretical foundation of adaptive control. Additional
frameworks emerged in the early 1960s, notably the work of
Mishkin and Braun [17], who provided a systematic treatment
of adaptive control principles and motivated their application
in engineering contexts. Around the same period, further de-
velopments and perspectives began to appear in the literature,
such as the contribution by Truxal [18], reflecting the growing
interest in adaptive techniques.

Adaptive modeling and control methods monitor the in-
put/output behavior of a plant to identify, either explicitly
or implicitly, the parameters of the design model and adjust
the controller parameters accordingly to meet the specified
performance. An adaptive system attempts to revise these pa-
rameters whenever the plant’s behavior changes significantly.
If the dynamical characteristics of the process vary over its
operational range, the control system may be required to
adapt continuously. In essence, adaptive modeling and control
combine an online parameter estimator with a control law to
regulate or compensate classes of plants whose parameters are
either initially unknown or vary over time in unpredictable
ways. The particular choices of estimator, control law, and
their integration define different classes of adaptive control
schemes [19].

The main approaches to adaptive control differ in whether
the controller parameters are adapted directly or indirectly. In
direct adaptive control, the controller parameters are adjusted
directly on the basis the observed system behavior. In indirect
adaptive control, the plant model parameters are first estimated
online, and the controller is subsequently updated as a function
of these estimates (Fig. 1).

Direct adaptive control was first introduced in the context
of model reference adaptive systems for aircraft control [20],
while indirect adaptive control emerged in digital process
control applications [21]. These adaptation strategies underpin
classical schemes such as Model Reference Adaptive Control
(MRAC) and Self-Tuning Regulators (STR) [22], [23], which
remain central to online adaptive control. MRAC defines the
desired closed-loop behavior via an explicit reference model
and adapts the controller to minimize the model-following
error, whereas STR estimates plant parameters online and
recomputes the controller using techniques such as pole place-
ment or optimal control synthesis.
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Fig. 1. Indirect adaptive control scheme

The use of adaptive control is based on the assumption
that, for any possible values of the coefficients of the plant
model, there exists a controller—with fixed structure and com-
plexity—capable of meeting the design specifications through
appropriate tuning of its parameters [24]. In this context, the
task of adaptation is to determine suitable values for the
controller parameters. It is worth noting that conventional
controller design relies on an offline mathematical model of
the process. Once an adequate model is obtained, established
design methods are used to synthesize a controller that meets
the required performance specifications. In contrast to this
static procedure, adaptive control systems aim to adjust model
and controller parameters online, while keeping their structures
fixed by design. These adjustments are driven by real-time
input-output data from the process.

Ultimately, in conventional design, both the model and con-
troller structures—as well as their coefficients and gains—are
fixed during operation. Adaptive systems allow real-time ad-
justment of model coefficients and controller gains but still
assume fixed structures. The simultaneous adaptation of both
the structure and parameters of the model and controller
remains an open challenge. As highlighted by Annaswamy and
Fradkov [25], adaptive control remains primarily concerned
with parameter adaptation—that is, the tuning of model coef-
ficients and controller gains. This limitation has motivated the
development of evolving control schemes capable of structural
and parametric learning from data streams.

B. Toward Evolving Modeling and Fuzzy Control

Evolving fuzzy systems represent a major shift in the field of
adaptation, learning, and self-organizing systems, with impact
extending well beyond fuzzy modeling and control, includ-
ing online classification, clustering, forecasting, and decision-
making in dynamic environments [7]. In contrast to conven-
tional modeling and control methods—which require an offline
design or training phase—evolving fuzzy systems simultane-
ously adapt both their structure and parameters (Fig. 2). They
emphasize incremental learning and self-development, can
operate entirely online, start from scratch without prior process
knowledge, and allow human knowledge to be incorporated at
any stage. The general scheme illustrated in Fig. 2 is applicable
to both evolving plant models and controllers, provided that
the appropriate input-output signals are considered. A practical

example employing both an evolving Takagi–Sugeno [26]
fuzzy model of the process and an evolving fuzzy controller,
within a parallel distributed compensation (PDC) [5] strategy,
was first presented in [6], where bounded control inputs and
Lyapunov stability were formally ensured.

Fig. 2. Evolving system—plant model or controller: Online adaptation of
both structure and parameters

Quoting the pioneers of the area [27]: “The newly emerging
concept of dynamically evolving structures, which was, to
some extent, already applied to neural networks [28], brought
a powerful new concept of evolving fuzzy systems (EFS).
EFS combine: (i) the interpolation abilities of fuzzy sys-
tems; (ii) their flexibility; (iii) the linguistic interpretability
of fuzzy systems; and (iv) the adaptive feature of online
learning techniques. This new topic was introduced during
the last decade [8]–[10], and quickly numerous applications
to problems of modeling, control, prediction, classification,
and data processing in a dynamically changing and evolving
environment were also developed, including some successful
industrial applications [29].”

The terms adaptation, learning system, and self-organization
often appear in the literature as synonymous. Early work views
an adaptive system as one that is insensitive to changes in
its environment, that is, one that performs acceptably well
over a range of inputs [30]. In contrast, a learning system is
one that operates satisfactorily under changing environmental
conditions in which an adaptive system does not improve
its performance [31]. Self-organization refers to a process
in which the structure and behavior of a system emerge
from interactions among its components. This contrasts with
conventional modeling and control systems, which rely on
centralized or fixed hierarchical structures. Self-organization
enables more flexible, adaptable, and resilient systems capable
of shaping their own behavior [32].

Current data-driven learning models and control methods
typically require an offline training phase, often based on
input-output datasets generated by applying a wide range of
input conditions in closed loop. This process is frequently
infeasible, especially for originally unstable systems. More-
over, these methods lack the capability to operate from scratch
and to perform concurrent, online adjustment of both system
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structure and parameters—a key requirement for fully self-
organizing and evolving systems.

C. Open Challenges and Paths Forward

Closing the loop with a controller that evolves from scratch
is risky, especially in open-loop unstable systems or those
involving safety concerns. While evolving fuzzy systems offer
the potential to self-develop from minimal prior knowledge,
their effective use in practice requires guarantees of safe
operation—especially during the early stages of learning. To
this end, possible strategies include: (i) using initial conserva-
tive controllers (fallback control) while the evolving model
and controller learn cooperatively through observation; (ii)
incorporating human-in-the-loop supervision; (iii) restricting
exploration to known safe regions of the input space; and (iv)
implementing bounded output policies that ensure safe actua-
tor behavior. Evolving fuzzy control should balance autonomy
with safety-aware initialization and updates to maintain system
stability and operational integrity.

Beyond safety, interpretability remains a key requirement
for the practical adoption of evolving fuzzy controllers. Future
research should address how to evolve models and controllers
in a controlled manner. Structural changes—such as the ad-
dition of new fuzzy rules—should be validated in shadow or
standby mode via separate computational simulations, or be
subject to human review before activation. Risk metrics and
domain-specific safety constraints should guide the evolution
process to protect critical state variables. Additionally, robust-
ness to uncertainty and resilience to anomalies are essential to
prevent overreaction and maintain system stability.

III. CONCLUSION

This paper revisited the fundamental concepts of adaptive
modeling and control, highlighting their capabilities and lim-
itations in the face of nonstationary and complex environ-
ments. While conventional adaptive systems support online
parameter adjustment, they operate under fixed model and
controller structures, which limits their ability to handle com-
plex, evolving processes. Evolving fuzzy systems fill this gap
by supporting both parametric and structural adaptation from
data streams, often without requiring prior process knowledge.
Their capacity for incremental learning and integration of ex-
pert opinion makes them a promising path forward. However,
applying these systems in real-world scenarios—particularly
those inherently unstable or involving safety risks—demands
additional mechanisms to ensure safe learning, interpretability,
and resilience. As such, future efforts should balance structural
adaptability and domain-aware validation.
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Abstract—We consider Fuzzy Machine Learning (FML) as
the most significant recent contribution in the fuzzy systems
area in the past 10 years. Machine learning draws its power
from various disciplines, including computer science, cognitive
science, and statistics. Although machine learning has achieved
great advancements in both theory and practice, its methods
have some limitations when dealing with complex situations
and highly uncertain environments. Insufficient data, imprecise
observations, and ambiguous information/relationships can all
confound traditional machine learning systems. To address these
problems, researchers have integrate different fuzzy techniques
into machine leaning called FML as a solution. FML are divided
into five categories: (a) fuzzy classical machine learning; (b)
fuzzy transfer learning; (c) fuzzy data stream learning; (d) fuzzy
reinforcement learning; and (e) fuzzy recommender systems. This
paper should provide researchers with a brief understanding of
the current progress in FML.

I. INTRODUCTION

FML stands out as an invaluable ally in the realm of
complex, and dynamic (uncertain) environments, presenting
substantial advantages that elevate its efficacy. Unlike tra-
ditional machine learning approaches, fuzzy techniques that
generally based on the concept of fuzzy sets and fuzzy
theory excel in capturing and navigating the nuanced shades
of uncertainty inherent in dynamic scenarios. Their inherent
ability to model uncertainty empowers it to gracefully adapt
to the ever-changing patterns that characterize dynamic envi-
ronments. In situations where traditional models might falter
or struggle to keep pace, fuzzy techniques emerge as robust
problem-solvers, providing a more accurate representation of
the inherent fuzziness present in real-world data. Furthermore,
in the relentless quest for interpretability, fuzzy machine
learning triumphs. Its models not only navigate complexity
but also offer clear insights into decision-making processes.
This interpretability proves to be a critical asset in dynamic
environments where understanding the rationale behind model
decisions is paramount.

In the past decade, there have been over 500, 000 articles
in high-quality journals and conference proceedings related to
FML. Recently, we published a paper [1] in IEEE Transactions
on Fuzzy Systems to provide a comprehensively survey that
summarizes the developments and achievements in the field
of FML. In this paper, we divide FML into five groups
(see Fig. 1) : (a) fuzzy classical machine learning; (b) fuzzy
transfer learning; (c) fuzzy data stream learning; (d) fuzzy
reinforcement learning; and (e) fuzzy recommender systems.

TABLE I
SOME SOTA WORKS RELATED TO FUZZY CLASSICAL MACHINE LEARNING.

Fuzzy technique Non-deep learning Deep learning algorithm

CNN Others(eg., RNN)

Fuzzy clustering [2] [3] [4] [5] [6] [7]

Type-1 fuzzy systems [8] [9] [10] [11] [12] [13]

Type-2 fuzzy systems [14] [15] [16] [17] [18]

TABLE II
SUMMARY OF THE SOTA PAPERS IN FUZZY TRANSFER LEARNING.

Fuzzy techniques Type

Regression Classification

Fuzzy sets [20] [21] [22] [23]

Fuzzy systems [24] [25] [26] [27] [28] [29] [30] [31]

Fuzzy relations - [32]

A. Fuzzy classical machine learning

Classical machine learning algorithms, such as decision
trees, support vector machines, and neural networks, have been
responsible for remarkable achievements both theoretically
and from a practical point of view. Numerous articles involve
combining fuzzy techniques with classical machine learning
algorithms to overcome different types of problems with
uncertainty, such as incomplete information and imprecise
observations. Table I provides some SOTA works related to
fuzzy classical machine learning.

B. Fuzzy transfer learning

Transfer learning [19] tries to train a well-performed model
in one domain (target) by leveraging knowledge from another
domain (source) that has different distribution or learning tasks
compared with the previous one. Notably, most current transfer
learning methods have limitations when handling real-world
situations with uncertainty, such as when only a few labeled
instances are available. To overcome these problems, many
researchers have turned to fuzzy sets and fuzzy logic. We have
divided the summary of recent works into three areas based on
the fuzzy technique used. These are fuzzy sets, fuzzy systems,
and fuzzy relations. Table II summarizes recent achievements
in the field of fuzzy transfer learning.

C. Fuzzy data stream learning

Learning from data streams [33] involves developing algo-
rithms and techniques to adaptively and incrementally process
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Comprehensive framework
of fuzzy machine learning

Fuzzy classical machine learning

Fuzzy transfer learning

Fuzzy data stream learning

Fuzzy reinforcement learning

Fuzzy recommender systems

No-deep learning-based fuzzy classical machine learning method

Deep learning-based fuzzy classical machine learning method

Fuzzy set-based transfer learning method

Fuzzy systems-based transfer learning method

Fuzzy relation-based transfer learning method

Fuzzy-based concept drift detection method

Fuzzy-based concept drift adaptation method

Fuzzy-based method for both concept drift detection and adaptation

Control systerms-based fuzzy reinforcement learning method

Multi-agent-based fuzzy reinforcement learning method

Collaborative filtering-based fuzzy recommender systems

Cotent-based fuzzy recommender systems

Knowledge-based fuzzy recommender systems

Hybrid fuzzy recommender systems

Fig. 1. Comprehensive framework of fuzzy machine learning.

TABLE III
SUMMARY OF THE SOTA ACHIEVEMENTS IN FUZZY DATA STREAM LEARNING.

Fuzzy techniques Type

DetectionAdaptationDetection and adaptation Others

Fuzzy clustering [34] [35] [36] [37] - -

Fuzzy set theory [38] [39] - - -

Fuzzy systems - [40] [41] [42] [43] [44] [45]

Fuzzy time series - [46] [47] - -

Others [48] [49] [50] [51] [52] [53]

and learn from continuously arriving data. Unlike traditional
machine learning scenarios where a static dataset is available
for offline training, data stream learning deals with dynamic,
evolving data streams that may not be stored entirely. However,
data streams often exhibit concept drift, which refers to
changes in the statistical properties of the data. Detecting
and adapting to concept drift are two important challenges in
data stream learning. One approach is to continuously monitor
the data and update models or retrain them periodically
to account for changes. Another approach is to use online
learning techniques that can adapt to changes in the data
stream in real-time. While concept drift often come with some
uncertainty problems – for example, making predictions from
data streams with mixed drift problems and detecting drift in
data streams with missing values – researchers are considering
the application of fuzzy techniques to address these challenges.
Table III summarizes some recent achievements in the field of
fuzzy data stream learning.

D. Fuzzy reinforcement learning

Reinforcement learning (RL) [54] represents a powerful
paradigm in machine learning, where agents learn to make
decisions through interaction with an environment, guided by

TABLE IV
SUMMARY OF THE SOTA ACHIEVEMENTS IN FUZZY REINFORCEMENT LEARNING.

Fuzzy techniques Type

Control systems Multi-agent RL Others

Fuzzy systems [55] [56] [57] [58] [59] [60] [61]

Others [62] - [63]

a system of rewards or penalties. However, the traditional RL
framework is not without its challenges, especially in scenarios
where the training process is inherently slow due to complex
and uncertain environments or sparse reward signals. Fuzzy
RL emerges as a promising approach to address these limi-
tations, leveraging fuzzy logic to enhance training efficiency
and overcome the hurdles associated with slow reinforcement
processes. Table IV summarizes some recent achievements in
the field of fuzzy RL.

E. Fuzzy recommender system

In real-world recommender systems, descriptions of user
preferences and item features, item values, and business
knowledge are often vague, imprecise, and plagued with
uncertainty. And, further, these issues can occur across the
entire recommendation process from collecting the data to
generating the recommendations. Other key problems that can
occur with recommender systems include sparsely populated
user-item matrices and problems with measuring the similarity
of items and users. Commonly used fuzzy techniques to deal
with these issues include intuitionistic fuzzy sets, fuzzy user
profiles, fuzzy rule-based systems, and fuzzy similarity. Table
V summarizes some recent works in the field of fuzzy-based
recommender systems.

II. CONCLUSION

Our survey paper shows that fuzzy techniques can signif-
icantly improve machine learning algorithms by providing
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TABLE V
SUMMARY OF THE SOTA FUZZY TECHNIQUES-BASED RECOMMENDER SYSTEMS

ACIEVEMENTS.

Fuzzy techniques Type

CollaborativeContent-BasedKnowledge-Based Hybrid

Fuzzy systems [64] [65] [66] [67] [68] [69]

Intuitionistic fuzzy set [70] - - -

Fuzzy clustering [71] [72] - - -

Fuzzy profile [73] - - -

Others [74] [75] [76] [77] [78]

a way to handle different uncertainty situations. The main
improvements are reflected in the following five aspects: 1)
enhancing the representation of the inputs; 2) improving the
learning process of different machine learning algorithms; 3)
enhancing measurement accuracy and reliability; 4) improving
the accuracy of the matching function; 5) enhancing the
performance (e.g., accuracy, robustness and interpretability) of
the output results. In future research, several new directions in
the field of FML warrant thorough consideration. For instance,
applying fuzzy techniques to address open-set transfer learn-
ing problems. In addition, multi-stream learning, multi-agent
RL, and cross-domain recommendations are three challenge
problems that are far from being solved.
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Abstract—Fuzzy set theory has been introduced for 60 
years. Since then, there are many theories developed based on 
the main theory. These theories have been used in several 
sectors including in biomedical engineering applications. In 
this paper, we show some of algorithms developed based on 
fuzzy set theory. Also, some of biomedical engineering systems 
based on the existing fuzzy algorithms are shown. 
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I. INTRODUCTION 

Fuzzy set theory has been introduced by L. A. Zadeh [1]. 
Since then, there are many theories and applications 
involving the theory. Many research groups have used fuzzy 
set theory in many applications including in biomedical 
engineering research works. Our research group here in 
Chiang Mai University has also used and developed 
algorithms based on the fuzzy set theory and apply it in many 
applications including biomedical engineering applications. 
Hence, in this paper, we describe some of our works 
involving with fuzzy set theory either developing new 
algorithms or using existing fuzzy set algorithms in the 
biomedical engineering applications. 

II. DEVELOPED ALGORITHMS BASED-ON FUZZY SET THEORY  
We have developed several algorithms based on fuzzy set 

theory and applied these algorithms in the biomedical 
engineering data sets. Examples of these algorithms are 
described as follows. 

A. Fuzzy Patch-based Segmentation 
The idea of fuzzy patch-based segmentation [2,3] is to 

overly segment an image using Fuzzy C-Means (FCM) 
clustering [4] with the number of clusters more than the 
number of classes. After that the required regions are derived 
by combining the patches in the oversegmented images. For 
example, if there are only two regions, i.e., nucleus and non-
nucleus, the patch combining is achieved by considering the 
FCM centers. If the center of the patch is less than 60% of 
the mean of all centers, then the patch is labeled as nucleus. 
Otherwise, it is labeled as non-nucleus. This method was 
used in white blood segmentation [2,3], cervical cell 
classification [5], cardiac T2* relaxation time estimation [6], 
and spleen tissue segmentation [7]. Example of data set and 
result is shown in figure 1. 

Fig. 1. Cervicle cell segmentation with fuzzy patch-based approach [5] 

B. Neuro-Fuzzy Algorithm 
There are several neuro-fuzzy algorithms developed by 

our research group such as gene selection and classification 
for diffuse large B-cell lymphomas microarrays [8] (model 
shown in figure 2). The model can achieve 100% 
classification rate on the validation sets of the 10-fold cross 
validation by using only 14 out of 7,070 features (genes) in 
the dataset. These 14 features including genes MDM4, 
STX16, NR1D2, DCLRE1A, PARK7, ATIC, HG4263-
HT4533_at, CSRP1, NASP, PGK1, HLA-DPB1_2, HLA-
A_2, ITK_2, and PLGLB2, were automatically selected by 
the model. The method could also identify the informative 
linguistic features for each class. For the DLBCL class, the 
first 5 most informative linguistic features were “HLA-A_2 
is Small,” “NASP is Large,” “MDM4 is Small,” “ATIC is 
Medium,” and “STX16 is Small,” respectively. For class 2, 
the first 5 most informative linguistic features were “HLA-
A_2 is Large,” “ATIC is Small,” “STX16 is Large,” 
“MDM4 is Medium,” and “NASP is Small,” respectively.  

 
Fig. 2. A Neuro-fuzzy model in [8] 

Another example of our neuro-fuzzy algorithms is the 
learning vector quantization inference classifier (LVQIC) [9] 
shown in figure 3. This model also provides 100% 
classification rate on the validation sets with 16 selected 
features. 
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Fig. 3. The structure of LVQIC [z6] 

C. Fuzzy Co-occurrence Matrix (FCOM) 
This method is one of the feature generation methods. 

The fuzzy C-means [4] is incorporated into the gray level co-
occurrence matrix with 4 and 8 clusters. Then for 4 clusters, 
each FCOM [10] will have the size of 4 4, while that with 8 
clusters will have the size of 8 8. Hence, there are 16 and 32 
FCOM planes in total, respectively. Similar to those 
computed from the Gray Level Co-occurrence Matrix 
(GLCM), in each FCOM plane, we compute 14 features [11]. 
These features are used in LVQIC [12] mentioned in the 
previous section for abnormalities detection (architectural 
distortion (AD), asymmetry (ASYM), calcification (CALC), 
well-defined/circumscribed masses (CIRC), other ill-defined 
masses (MISC), and spiculated mass (SPIC)) in 
mammograms. Example of the blind test result of the model 
is shown in table 1. 

TABLE I.  THE BEST BLIND TEST RESULT FROM THE MODEL IN [12] 

AD SPIC CALC CIRC

100% with 
0.03 FPR

100% with 
0.04 FPR

100% with 
0.06 FPR 

100% with 
0.02 FPR

D. Fuzzy Vector Pattern Recognition 
Normally, data is in the form of a real number and it can 

also be represented by a vector of real numbers 
corresponding to an appropriate linear space. However, if 
there is an uncertainty in the data itself. This type of data can 
be produced by the imprecision of an agent who collected the 
data, or produced by nature, and can best be modeled by a 
fuzzy subset, the value of a linguistic variable. As a vector of 
fuzzy subsets in the Euclidean space, a linguistic vector can 
represent this uncertain data.  

 
Fig. 4. Prototypes for I, A, and S Classes [13] 

The fuzzy perceptron with pocket Algorithm [14] and 
fuzzy multilayer perceptron with cuckoo search [15] for the 
same data set were also developed. Figure 5 shows the fuzzy 
weight from the model in [14]. 

                                 (a)                                               (b) 

                                (c)                                                   (d) 

                                   (e)                                                  (f) 

                                 (g)                                               (h) 
Fig. 5. Final weight fuzzy vectors [14] (a) L-CORE, (b) L-SURF, (c) L-

O2, (d) L-BP, (e) SURF-STBL, (f) CORE-STBL, (g) BP-STBL, and 
(h) bias. 

Example of this data in biomedical engineering is the 
postoperative patient data collected at the University of 
Kansas and the University of Missouri-Columbia. The 
linguistic hard C-means (LHCM) [13] was developed to 
group patients into Intensive Care Unit (I class), general 
hospital floor (A class) or go home (S class). Figure 4 shows 
the prototypes from the LHCM. 

III. UTILIZATION OF THE EXISTING FUZZY SET ALGORITHMS

In this section, we summarize the utilization of existing 
fuzzy set algorithms, e.g., type-1 and type-2 fuzzy logic 
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systems and fuzzy clustering algorithms in some of our 
biomedical engineering applications.

A. Type-1 and Type-2 Fuzzy Logic System
Type-1 fuzzy logic system, meaning the Mamdani 

system [16] in our case, has been used in many applications. 
We utilized this system in detecting microcalcification and 
mass in mammograms data set [17, 18]. In the same 
application, we also implemented the Mamdani fuzzy 
inference system with automatic membership function 
generation [19, 20] using the Possibilistic C-Means and 
compared the results with that using the Fuzzy C-Means 
applying to the same set of features [21]. Example of data set 
and results from this system is shown in figure 6. Other than 
detecting abnormalities in mammograms, we utilized the 
Mamdani system with automatically generated rules from the 
Wang-Mendel (WM) method [22, 23] and automatically 
generated membership function using the possibilistic fuzzy 
C-Means [23] in detection 4 infected classes (abnormal case) 
against non-infected class (normal case) [24] of an infected 
cell from Plasmodium vivax which is one of the Plasmodium
species responsible for malaria in humans. Example of data 
set and results in this case is shown in figure 7.

    
                                   (a)                 (b)                (c)

Fig. 6. Example of mamogram data set (a) original, (b) expert’s opinion, 
and (c) detection reuslts from the system [21].

original image
(infected cell)

segmented cell
(classified as 
infected cell)

original image
(infected cell)

segmented cell
(classified as 
infected cell)

(a)

original image
(non-infected cell)

segmented cell
(classified as non-infected cell)

(b)

Fig. 7. Examples of correct clssifications [24] (a) infected cells and (b) 
non-infected cell.

We also used Type-2 fuzzy logic system [25] in 
microcalcification detection system [26]. Moreover, we also 
implemented the same system with automatically generated 
membership functions [19, 20] using the Possibilistic C-
Means and again compared the results with that using the 
Fuzzy C-Means [4] applying to the same set of features [27]. 
The results from the type-2 fuzzy logic system show that it is 
better than the system with type-1 fuzzy logic system as 
shown in figure 8. Another application of the type-2 fuzzy 
logic system is the lung nodule detection [28] which is a 
crucial task in lung cancer examination. Example of the data 
set and result is shown in figure 9.

Fig. 8. ROC curve of microcalcification detection system [28] (dashed 
line show the result from type-1 Mamdani fuzzy inference system 
whereas solid line show the result from interval type-2 fuzzy logic 
system)

Fig. 9. Example of correct detection [28] (blue box is the ground truth, 
whereas the red box is the system output).

B. Fuzzy Clustering Algorithms
One of the health-related applications is a dental fluorosis 

classification system. Dental fluorosis occurs in many parts 
of the world because of highly exposure to high 
concentration of fluoride in the teeth development stage. To
help the health policy makers developing the prevention and 
treatment plans, a manual or automatic image-based dental 
fluorosis classification system is needed. To build the 
system, we implemented multi-prototypes from Fuzzy C-
means [19] in our system [29]. Also, in the same problem, 
we implemented [30] multi-prototype from the unsupervised 
possibilistic fuzzy clustering [31,32] via Cuckoo Search 
Algorithm [33,34]. We were able to classify the dental 
fluorosis into required stages. Example of data set and results 
[30] is shown in figure 10.

Fig. 10. Example of each fluorosis class from the training set and their 
segmented images [30]: Image F3_1 (Stage 3). The left image
presents the expert’s labels of opaque pixels and brown pixels, 
encircled in black and red, respectively. The middle image presents 
predicted binary tooth masks. The right image presents the predicted 
white-yellow, opaque, and brown pixels in blue, green, and red 
colors, respectively.

IV. CONCLUSION

To celebrate the 60th anniversary fuzzy set, in this paper, 
we describe some of our works involving with fuzzy set 
theory either developing new algorithms or using existing 
fuzzy set algorithms in biomedical engineering applications. 
In the future, there will certainly be more algorithms 
developed based on the fuzzy set theory. In addition, they 
will be used in many more applications in biomedical 
engineering, and in other fields.
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Abstract—In this note we recall some important concepts
on aggregation techniques that have changed the traditional
methodology for information fusion under uncertainty, namely,
the pre-aggregation functions that allow directional monotonicity,
(a, b)-fusion functions, which allow to define known aggregation
functions in any real interval without losing their constituent
features and properties, and width-limited interval-valued aggre-
gation functions that allows to control the information quality of
the results in interval-valued problems.

Index Terms—Aggregation functions, pre-aggregation func-
tions, Width-limited interval-valued aggregation functions, (a,b)-
aggregation functions

I. INTRODUCTION

Information fusion is featured in many different fuzzy mod-
els, where, numerous membership values have to be combined
into a single representative one, according to some criteria.
This process is usually carried out by aggregation functions,
which are increasing operators with some boundary conditions.

The study of aggregation functions has been the focus of
many researchers of the fuzzy community since the origin of
the concept. In fact, data aggregation is involved in several
applications, such as classification, image processing, multi-
criteria decision making, analysis of social networks, brain-
computer interface, control, convolutional neuro networks and
adaptive neuro fuzzy networks.

Such models rely on well-developed aggregation mecha-
nisms, and recently some of them have faced new proposals.
For that reason, by introducing new aggregation functions,
many practical applications benefited from the definition of
new aggregation operators, motivating the theoretical devel-
opment of such functions.

Here, we will highlight 3 works (namely [1]–[3]), from the
last decade that we think deserve the attention of the fuzzy
community and that could inspire new developments in the
field of aggregation-like functions.

This work was partially funded by the following funding agencies:
FAPERGS (24/2551-0001396-2, 24/2551-0000723-7, 23/2551-0001865-9),
CNPq (304118/2023-0, 407206/2023-0), CAPES, FAPESP (2022/09136-
1), FAPERGS/CNPq (23/2551-0000126-8), PID2022-136627NB-I00,
MCIN/AEI/10.13039/50100011033/FEDER,UE.

II. PRE-AGGREGATION FUNCTIONS AND WEAKER FORMS
OF MONOTONICITY

Traditionally, aggregation functions have the monotonicity
property. However, important operators such as the mode are
not increasing, but can still be applied to fuse information.
Inspired by this situation, researchers started to study alter-
native forms of monotonicity, such as weak monotonicity
and directional monotonicity, which allow monotonicity to be
fulfilled along (some) fixed ray.

With this in mind, Lucca et al. [1] have introduced the
concept of pre-aggregation functions. These functions respect
the boundary condition as any aggregation function; however,
they are directional increasing. This novel concept allowed the
definition of generalized functions based on fuzzy integrals
that have been successfully applied, primarily in classification
problems [4]–[7], but also in other applications such as image
processing [8], [9], multi-criteria decision making [10], [11]
and brain-computer interface [12], [13].

It should be noted that, to this day, a state-of-the-art fuzzy
rule-based classification system relies on a pre-aggregation
function in a crucial aggregation step of its inference method
[14]. In addition, the state-of-the-art method for the edge
detection problem adopts pre-aggregation functions given by
generalized fuzzy integrals (based on sliding window adaptive
fuzzy measures), which are used to merge extracted features
[15].

III. WIDTH-LIMITED INTERVAL-VALUED AGGREGATION
FUNCTIONS

The concept of aggregation function has been extended to
consider other type of inputs, when dealing with different types
of fuzzy modeling. For example, when considering interval-
valued fuzzy sets, interval-valued aggregation functions have
to be applied to enact the information fusion of the interval
membership degrees. In this context, the width of the operated
intervals can carry the quality of the information of the
process.

In Asmus et al. [2], a theoretical framework was introduced
to define interval-valued fusion functions with information
quality control, in a way that the defined interval function
is based on a core fusion function (defined in [0, 1]) and
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the widths of the operated intervals are limited by a width-
limiting function. This framework enables the definition of a
flexible interval aggregation operator with parameters that can
be adjusted according to the application at hand. This method-
ology has been applied in interval-valued fuzzy problems, for
example, for attribute reduction in incomplete interval-valued
information systems [16].

Additionally, the application of interval overlap operators
with controlled widths improved the accuracy of the IVTURS
method, which is now the state-of-the-art for interval-valued
fuzzy rule-based classification systems [2].

IV. (a, b)-AGGREGATION FUNCTIONS

It is known that aggregation functions can be defined in
any real interval [a,b] by adjusting the boundary conditions
and that some relevant practical applications have to aggregate
inputs that are not from the unit interval, such as in convolu-
tional networks. However, since most of the developments in
the field of aggregation functions revolve around some type of
fuzzy modeling, it is natural that most of the functions used
are defined in the unit interval [0, 1].

In order to appropriately transpose some fuzzy operators to
be applied in other domains, beyond the unit interval, Asmus
et al. [3] have introduced a general framework to characterize
classes of fusion functions with floating domains, called (a, b)-
fusion functions, defined in any closed real interval [a, b],
based on classes of core fusion functions defined on [0, 1]. The
fundamental aspect of this framework is that the properties of
a core aggregation function are preserved in the context of the
analogous (a, b)-aggregation function.

The concepts of this work enabled the definition, for exam-
ple, of n-dimensional (a, b)-grouping functions, which have
provided excellent results when applied as the pooling operator
in convolutional neural networks [17]–[19].

V. FINAL THOUGHTS

With Artificial Intelligence at the forefront of recent tech-
nological advancements, the field of aggregation functions
is as relevant as ever. Concepts from the key highlighted
papers, namely [1]–[3], are currently applied to further develop
the aggregation step of many computational methods. We
chose them since they are not bound to a specific problem
or application; on the contrary, they introduce constructive
approaches to develop new, flexible, aggregation operators.

We hope that this brief exposition can introduce what we
consider to be some of the most relevant developed concepts
from the last decade in the field of aggregation functions to
some colleagues of the fuzzy community, maybe inspiring new
approaches and studies in this field.
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Abstract—This paper is devoted to the recognition of the deter-
minant work of pioneers in fuzzy logic in the field of knowledge
discovery in databases. When knowledge comes from real-world
data, it can be affected by noise, imprecision, and uncertainty,
and hence, existing methods need to be properly adapted in order
to manage this issue. Well-known techniques such as association
rule mining have been extended to the fuzzy case, allowing not
only to discover fuzzy association rules, but also different types
of knowledge, as it is the case of fuzzy approximate dependencies
and fuzzy gradual dependencies. Fuzzy sets theory has also
opened the door to different approaches for uncertainty and
imprecision management in data mining, such as the ones based
on representation by restriction levels. Finally, the advantages of
a novel framework for incremental maintenance of fuzzy rules
are discussed.

Index Terms—fuzzy data mining, fuzzy rules, fuzzy dependen-
cies

I. INTRODUCTION

Within the vast field of knowledge discovery techniques,
association rules (ARs) have been consolidated as one of the
most popular and well-known. ARs have been widely used for
discovering hidden patterns and relationships among itemsets
in large volumes of data. ARs are defined over transactions
of items, and were originally conceived [1] to analyze market
baskets (e.g. “customers who buy diapers also buy beer”),
and their scope has expanded significantly. In particular, when
applied to real-world data, which are frequently noisy, incom-
plete, or imprecise, classical ARs can be not enough, often
resulting in the loss of valuable information or the generation
of artificially, ill-defined, rules.

Fuzzy set theory, as proposed by L.A. Zadeh [2], introduced
a new paradigm able to manage uncertainty and imprecision
in data by allowing elements to belong to a set with a
degree of membership between 0 and 1. This flexibility proved

This publication is part of the Grant PID2021-126363NB-I00 funded
by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making
Europe”.

fundamental for knowledge discovery in databases [3], where
attributes can be inherently ambiguous (e.g., “high temper-
ature”, “average salary”) or where the goal is to capture
relationships that are not strictly binary.

Returning to association rules, as powerful as they are in
terms of describing information, further research has allowed
them to be applied in the discovery of different types of knowl-
edge. One particular case is that of approximate dependencies
(ADs), which can be viewed as “functional dependencies with
exceptions”. In the field of databases, a functional dependency
(FD) between two or more attributes occurs when the values
of some of these attributes determine the values of other
attributes. However, in real-world databases, patterns are rarely
perfect. There may be exceptions, noise, or inherent variations
that make a relationship “mostly” true, but not absolutely.
Hence, ADs allow to flexibilize this condition. In [4], it is
stated how, by transforming a relational table into a set of
transactions, it is possible to obtain approximate dependencies
in terms of association rules.

Moreover, when dealing with imprecise data, classical meth-
ods for AR extraction can be extended to the fuzzy case.
In the same way, the methodology mentioned before can be
extended to obtain other types of fuzzy rules in terms of fuzzy
association rules. In this work, our intention is to acknowledge
Zadeh’s seminal work, the following research, and its role in
the definition and development of new methods and techniques
for knowledge discovery in fuzzy databases, by extending the
definition of association rules.

The paper is structured as follows. First, we recall the
classical definition for ARs and the definition of ADs in terms
of the former. Then, we recall their extensions to the fuzzy
case, as well as discuss some alternate and open research lines.
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II. FROM CRISP ASSOCIATION RULES TO APPROXIMATE
DEPENDENCIES

In this section, we recall the main definitions regarding
association rules, as a data mining tool to extract hidden
relations in transactions of items.

A. Fundamentals of association rules

Being I a finite set of items and T a finite set of transactions
with items in I , an association rule, A ⇒ B, where A,B ⊆ I ,
A,B ̸= ∅, and A ∩ B = ∅, can be interpreted as “every
transaction in T that contains A also contains B”. Since
this statement may not hold for every transaction in T ,
measures are often defined to establish the interest, based on
the support of the rule (fraction of transactions that contain
A∪B) and the accuracy or confidence of the rule (fraction of
transactions that contain A∪B in transactions that contain A).
However, different authors have pointed out some drawbacks
on confidence as a misleading metric, and alternative metrics
such as the certainty factor [5] have been proposed in the
literature [6], [7].

B. Approximate dependencies as association rules

Let R be a set of attributes, and r be a relation with
attributes in R. Given X,Y ⊂ R with X∩Y = ∅, a functional
dependency X → Y holds in R iff for every instance r of R,

∀t, s ∈ r, if t[X] = s[X] then t[Y ] = s[Y ]. (1)

Looking for functional dependencies in relational databases
has been an object of interest in the field of data mining, since
they can be very informative about the inner structure of data.
However, it is difficult to find perfect functional dependencies,
since one single exception to 1 causes the dependency to
not hold. Approximate dependencies allow to flexibilize this
restriction, while still revealing us interesting regularities in
data.

The definition of approximate dependencies is then a matter
of how to consider these exceptions and how to measure their
precision (that is, the proportion of tuples in a relation where
the dependency holds), as seen in [8]. In the present case,
following the proposal in [4], it is seen how approximate
dependencies can be obtained in terms of association rules.
This approach is also interesting because it allows us to apply
the same metrics (support, confidence, and certainty factor) to
measure the interest and accuracy of an AD.

III. FROM CRISP (CLASSICAL) TO FUZZY RULES

The transition from the classical to the fuzzy domain was a
natural and necessary step to address the reality of databases
with quantitative and qualitative attributes that cannot be
adequately represented by discrete categories or exact values.

A. Fuzzy association rules

Fuzzy association rules (FARs) extend the classical concept,
and different approaches can be found in the literature (see [9],
[10] for a review). In [9], FARs are defined and assessed by
defining transactions as fuzzy subsets of I , and considering
membership degrees between 0 and 1 of items in a fuzzy
transaction. In a similar way to the definition offered in
subsection II-A, a fuzzy association rule can be seen as an
implication of the form A ⇒ B, where A,B ⊆ I , A,B ̸= ∅,
and A ∩ B = ∅. In this case, a semantic approach based on
the evaluation of quantified sentences, as described in [11],
can be used to define a set of fuzzy metrics that yield the
ordinary measures for support, confidence and certainty factor
in the crisp case. Hence, this approach offers a consistent fuzzy
generalization of crisp association rules.

B. Fuzzy approximate dependencies

Following an analogous methodology as the one described
in II-B, fuzzy approximate dependencies (FADs) are pro-
posed in [12], and defined in terms of fuzzy association
rules. In addition to allowing exceptions, several elements
of the definition of functional dependencies (equation 1) are
relaxed. In particular, membership degrees associated to pairs
< attribute, value > in a fuzzy relation are considered, as
well as fuzzy similarity relations that smooth the equality of
the rule.

One of the advantages of this approach is that of measuring
the interest and accuracy of FADs in terms of FARs, as an
extension to the fuzzy case of the method mentioned in section
II-B, by means of the fuzzy measures mentiond in section
III-A.

In [13], [14], FARs and FADs are applied to obtain corre-
spondences between attributes in a fuzzy context, particularly
an agricultural environment, as an extension of the problem
of correspondence analysis to the fuzzy domain.

C. Additional fuzzy rules: gradual dependencies

Gradual dependencies can be seen as a special type of rules
that represent a trend, a casual relation among the variation in
the degree of fulfillment of imprecise properties by different
objects [15]. Consider for instance a database containing data
about vehicles. An example of gradual dependence is “the
higher the weight, the lower the speed”, meaning that as the
weight of a truck increases, its speed tends to decrease. In
general, we can consider all types of gradual dependencies
derived from the form “the more/less X is A, the more/less Y
is B”, where X,Y are attributes that can be modeled by fuzzy
properties A,B. Formally, a gradual dependence (∗1, X,A) →
(∗2, Y, B) with ∗1, ∗2 ∈ <,> is defined by equation 2.

∀t, s ∈ r, if A(t[X]) ∗1 A(s[X]) thenB(t[Y ]) ∗2 B(s[Y ]).
(2)

Based on suitable definitions of the abstract notions of
item and transaction, the proposal in [16] allows to obtain
fuzzy gradual dependencies as fuzzy association rules, and
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the measures of support, confidence and certainty factor are
employed in order to assess such dependencies.

IV. RULE MINING VIA RESTRICTION LEVELS

Research into fuzzy association rules and their extensions
continues to evolve, leading to approaches that address specific
challenges or explore new perspectives in knowledge represen-
tation.

As discussed before, fuzzy sets theory offers a way to
represent and manage concepts and objects affected by vague-
ness and imprecision. In the last years, an alternative theory,
called representation by levels (RL) has been proposed (see
[17], [18]) for the same purpose, covering some important
capabilities that cannot be provided by fuzzy sets theory.

In short, instead of considering membership degrees, RLs
assign objects to levels in an ordered set, where those levels
represent degrees of relaxation of the criteria employed when
defining properties or features.

As described in [19], [20], representation by levels offers an
intuitive and straightforward way to obtain fuzzy association
rules as well as other types of rules, by extracting association
rules on each restriction level. The proposal ensures that crisp
operations and measures can be easily extended to RLs, while
maintaining all the properties of the crisp case.

This is particularly interesting due to different reasons:
• RLs allows to extract approximate dependencies at a

certain restriction level. Users can be interesting in crisp
approximate dependencies only: easier to understand,
dependencies to be found only at a given level . . .

• Due to the nature of data itself, and derived from the
RL approach, some attributes values may be present only
at certain levels, and so may happen with the related
dependencies. RLs should help in the discovery of this
potentially useful knowledge.

• Obtained crisp approximate dependencies, extracted level
by level, can be later aggregated into fuzzy approximate
dependencies, without any loss of generality, thus allow-
ing users to decide which ones can be more interesting.

When considering RLs, it must be remarked that in no way
it is meant that conventional fuzzy data mining is not useful or
must be replaced by using RLs. In [20] it is shown that RLs are
a suitable alternative to fuzzy sets for representing fuzziness,
as they offer very important properties and possibilities that
fuzzy sets cannot, providing solutions when such properties
are required. They must be seen as an alternative to consider,
in the same way that there are different alternatives for fuzzy
operators in fuzzy set theory when modeling a fuzzy system,
and no one can be said to be better than another in general.

V. INCREMENTAL FUZZY DATA MINING

One of the biggest challenges in data mining in dynamic
environments is the efficient updating of extracted knowledge
when the underlying database changes. Real-world databases,
e.g., stream data, sensor network data, network traffic data,
etc., constantly grow and are modified with new transactions,
deletions, or updates. Regular knowledge discovery techniques

can lead us to inexact or eventually obsolete rules. And
recalculating all derived rules from scratch every time the
database is modified is computationally expensive and often
unfeasible for large data volumes.

This is where incremental data mining becomes an impera-
tive need. This paradigm seeks to develop techniques that can
efficiently update existing rules by incorporating changes in
the database without the need to reprocess the entire dataset.
The key is to reuse previously mined knowledge and only
process the new or modified portions of the database.

In [21], a novel framework for maintenance of discovered
rules based on incremental data mining is proposed, in order
to address these issues. The advantage of this proposal lies
in the fact that, through materialized views, it keeps the
metrics of the extracted rules up to date, allowing for real-
time detection of whether any of these rules are invalidated
or become obsolete with the emergence of new evidence in
data. Two approaches are described, an immediate incremental
maintenance method, which updates the rule database every
time the main database is updated, and a second, deferred
incremental maintenance method, which allows to schedule
the update in a more efficient way.

Furthermore, the representation of knowledge and its met-
rics is scalable enough to be extended to new types of
knowledge and new metrics. In particular, the extension to
the fuzzy case, for the maintenance of fuzzy association rules
and fuzzy approximate dependencies, is discussed in [22].

VI. CONCLUDING REMARKS AND FUTURE PERSPECTIVES

Without a doubt, L.A. Zadeh’s fuzzy sets theory has proven
to be a relevant milestone for the improvement of artificial
intelligence, specially in the field of knowledge discovery in
databases, reflecting the complexity and imprecision in real-
world data. In this work, it is recalled how classical (crisp)
knowledge as association rules and approximate dependencies
can be extended to the fuzzy domain, allowing to handle
the imprecision of quantitative and linguistic attributes. The
exploration of fuzzy gradual dependencies allows extraction
of trend patterns between attributes.

In addition, alternative approaches, as representation by
levels, have been highlighted, as well as the crucial need for
incremental fuzzy data mining for dynamic systems.

The relevance of these techniques extends to different prac-
tical applications, from decision-making in uncertain scenarios
to customization in recommendation systems and diagnosis in
expert systems. The field remains open for future challenges
and opportunities, including:

• Development of more scalable techniques for fuzzy data
mining in large volumes of data.

• Improvement of the interpretability of obtained rules,
looking for more intuitive ways to present extracted
knowledge to end users.

• Application of these techniques in emerging new do-
mains, such as sensor networks and Internet of Things,
personalized healthcare systems, and some other scenar-
ios where uncertainty and imprecision are ubiquitous.
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As a conclusion, fuzzy sets theory is not just a mathematical
theory, but an invitation to embrace the complexity of real
world, providing tools to extract meaningful and useful knowl-
edge from uncertain and imprecise data, in the pursuit of more
robust, adaptable and, particularly, more human intelligent
systems.
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Abstract—We discuss about the contribution of the theory of
Representations by Levels (RLs), akin to Gradual Sets and the X-
µ approach, for dealing with graduality. RLs offer features that
Fuzzy Sets cannot like, among others: i) keeping the Boolean
algebra structure of crisp sets, among other properties of the
crisp case; ii) offering a direct and unique extension of operations
from the crisp to the fuzzy case, and iii) allowing graduality to
be represented for mathematical objects other than sets, like
elements (particularly numbers). We advocate for a symbiosis
with Fuzzy Sets in what we call RL-systems, in which Fuzzy Sets
are employed as inputs and also as a summary that complement
the outputs, whilst the RL theory is employed in the internal
calculations. There are many research opportunities in both
theoretical aspects and the development of practical applications
using RLs and related theories.

I. INTRODUCTION

The introduction of Fuzzy Sets by Zadeh sixty years ago
served to widely disseminate in the scientific community the
need to deal with graded concepts, that is, concepts whose
fulfillment is a matter of degree, like high temperature, around
3, etc. At the same time, research developed in the fuzzy
community since then has provided numerous mathematical
tools for representing and managing graded concepts, with
the goal of mimicking the way humans handle such concepts.
Over the past sixty years, researchers in Fuzzy Set Theory
(FST) have contributed a wealth of theoretical results and have
applied them to solving real-world problems. And, no doubt,
the fuzzy community will continue to do so.

It is well known that in FST, a graded concept A defined
on a referential set X is represented by a fuzzy set, which
is specified by a membership function that assigns degrees of
membership to elements of X , typically taking the form:

µA : X → [0, 1]. (1)

In this contribution, our analysis focuses on the ideas behind
a particular group of alternative representations of graded
concepts that have also emerged in the fuzzy community:
Gradual Sets [1], Representations by Levels (RLs) [2], [3],
and the X-µ approach [4], [5], [6]1, with particular focus on
RLs. The common thread running through these alternative

1A review of related works can be found in [1], [3]. More recently, a relation
between Gradual Sets and Hesitant Fuzzy Sets have been studied in [7].

proposals is the representation of graded concepts by using
functions of the form:

ρA : (0, 1] → 2X , (2)

where 2X represents the power set of X . That is, member-
ship functions of the form shown in Eq. (1) associate degrees
to elements of X , focusing on the latter individually. Following
a different paradigm, Eq. (2) takes as starting point values in
(0, 1] to which crisp subsets of X are associated as possible
crisp versions of A.

But, what is the semantics of Eq. (2)? Following the theory
of RLs, the values in (0, 1] represent how strict we are in
determining the elements of X that satisfy A. The value 1
represent the maximum possible degree of restriction, that is,
ρA(1) is the crisp set of elements of X for which there is no
doubt they satisfy A. On the other extreme, the value 0 has
a semantics of no restriction, and hence is never considered
in RLs, as it gives no information about A. The semantics
of intermediate values is associated to the distance to the
extremes, representing a higher level of restriction as they are
closer to 1. The value 0.5, for instance, is halfway between
being totally strict and being not strict at all.

Hence, RLs conceive the representation of graded concepts
as a collection of crisp versions associated to different levels
of restriction (or, conversely, tolerance) in the application of
the criteria to determine which elements satisfy A.

For those familiar with FST, Eq. (2) will remind you of the
α-cut representations of fuzzy sets. Indeed, given a fuzzy set
µA, an associated RL can be obtained by defining ρA(α) =
(µA)α ∀α ∈ (0, 1], with (µA)α being the α-cut of µA. In this
sense, Eq. (1) corresponds to the usually called vertical view of
a fuzzy set µA, whilst the corresponding assignment of α-cuts
to levels in (0, 1] can be associated to the so-called horizontal
view, which is a useful but subordinate tool employed in FST
for purposes like extending crisp operations to the gradual
case.

However, the RL theory goes beyond fuzzy sets. Notably, in
Eq. (2), the sets ρA(α) are not required to satisfy the nesting
property of α-cuts of fuzzy sets, as we shall see. Therefore,
the theory of RLs is not a tool within FST, but an alternative
theory for representing and managing graduality outside of
it, offering some possibilities that FST does not. However,
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TABLE I
EIGHT RLS WITH Λ = {1, 0.9, 0.7, 0.5, 0.3, 0.1} REPRESENTING GRADED CONCEPTS. COLUMNS FOR A, B, A∧¬A, A∨¬A, AND A∧B CAN BE SEEN

AS NESTED α-CUTS OF FUZZY SETS (COLUMNS A ∧ ¬A AND A ∨ ¬A YIELDING THE CRISP RESULTS EXPECTED UNDER A BOOLEAN STRUCTURE) [3].

α ρA(α) ρ¬A(α) ρB(α) ρ¬B(α) ρA∧¬B(α) ρA∧¬A(α) ρA∨¬A(α) ρA∧B(α)
1 {x1} {x2, x3, x4, x5} ∅ X {x1} ∅ X ∅

0.9 {x1} {x2, x3, x4, x5} {x1} {x2, x3, x4, x5} ∅ ∅ X {x1}
0.7 {x1, x2} {x3, x4, x5} {x1} {x2, x3, x4, x5} {x2} ∅ X {x1}
0.5 {x1, x2} {x3, x4, x5} {x1, x3} {x2, x4, x5} {x2} ∅ X {x1}
0.3 {x1, x2, x3} {x4, x5} {x1, x3, x4} {x2, x5} {x2} ∅ X {x1, x3}
0.1 {x1, x2, x3, x5} {x4} {x1, x3, x4} {x2, x5} {x2, x5} ∅ X {x1, x3}

TABLE II
α-CUT REPRESENTATIONS OF THE FUZZY SETS ASSOCIATED TO THE GRADED CONCEPTS A AND B IN TABLE I, AND OF THE FUZZY SETS OBTAINED BY

OPERATING USING MINIMUM, MAXIMUM AND STANDARD NEGATION.

α (µA)α (µ¬A)α (µB)α (µ¬B)α (µA∧¬B)α (µA∧¬A)α (µA∨¬A)α (µA∧B)α
1 {x1} {x4} ∅ {x2, x5} ∅ ∅ {x1, x4} ∅

0.9 {x1} {x4, x5} {x1} {x2, x5} ∅ ∅ {x1, x4, x5} {x1}
0.7 {x1, x2} {x3, x4, x5} {x1} {x2, x4, x5} {x2} ∅ X {x1}
0.5 {x1, x2} {x3, x4, x5} {x1, x3} {x2, x3, x4, x5} {x2} ∅ X {x1}
0.3 {x1, x2, x3} {x2, x3, x4, x5} {x1, x3, x4} {x2, x3, x4, x5} {x2, x3} {x2, x3} X {x1, x3}
0.1 {x1, x2, x3, x5} {x2, x3, x4, x5} {x1, x3, x4} X {x1, x2, x3, x5} {x2, x3, x5} X {x1, x3}

this does not mean that one theory is better than the other in
general. And, as we pointed out in the title of our contribution,
both can complement each other, creating a synergy to address
graduality in solving problems where FST’s limitations prevent
its use.

In the following Sections we informally overview some
aspects of interest of RLs.

II. GRADUALITY IN SETS

We have seen in the previous section how both FST and RLs
represent graduality in sets, providing different representation
of the collection of elements of X that satisfy a graded concept
A. Whilst FST can only represent graduality of sets, RLs can
be applied to other mathematical objects, as we shall see in
Section III.

A. Representation

Gradual Sets and the X-µ approach consider in general an
infinite amount of crisp representatives of a graded concept A
(think for instance of the collection of α-cuts of a trapezoidal
fuzzy set defined on the real line). On its turn, RLs consider
only the case of a finite amount of them. This is reasonable
from a practical perspective, since the amount of levels that
humans and computers are able to manage is always finite. The
crisp representatives are associated to a collection of levels
Λ = {α1, . . . , αm} with 1 = α1 > α2 > · · · > αm >
αm+1 = 0. Then, assuming that ρA(αi) is given for every
αi ∈ Λ, the function ρA is defined for every α ∈ (0, 1] as
follows:

ρA(α) = ρA(αi) iff αi ≥ α > αi+1. (3)

Table I shows eight RL-sets (RLs of sets) representing
the fulfilment of eight different graded concepts on a set
X = {x1, . . . , x5}. A set Λ with six levels has been employed
though, for some of the RL-sets, it would have sufficed
with less levels. For instance, the RL-set for concept A only

requires to provide the sets for levels 1, 0.7, 0.3 and 0.1. Even
more, A ∧ ¬A and A ∨ ¬A only require level 1, as they are
crisp sets.

In Table I we can see that not all RL-sets have their crisp
representatives nested as the collection of α-cuts of a fuzzy
set. Three of them are not nested, and hence they do not
correspond to a kind of horizontal view of fuzzy sets.

B. Operations
An important point that can be also illustrated with Table

I is that of operations with RLs. The philosophy of RLs
is that operations between RLs are performed by applying
the operations using the crisp representatives in each level
independently. As an example, the complement of the RL-set
for concept A, corresponding to the representation of ¬A, is
obtained as the complement of the crisp representative of A in
each level, as shown in Table I. The same idea is employed for
union and intersection that yield the corresponding conjunction
and disjunction of graded concepts, as shown in several
columns in the table.

This way of operating has several implications. First, all
the properties of the crisp case are kept, so RL-sets satisfy
all the properties of Boolean algebras. This can be seen in
Table I in the columns corresponding to the RLs for A ∧ ¬A
and A ∨ ¬A (at the same time, but not shown in the table,
A∧A = A∨A = A). This is related to the fact that, contrary
to operations with fuzzy sets, operations with RLs are not
truth-functional. Also, the translation of crisp operations like
these to the case of graded concepts is unique and direct (think
of set difference, implications, etc.). The price to pay is the
necessity to maintain a collection of crisp representatives in
memory, and the time needed for the computation (that can
be alleviated via parallelization since operations are performed
independently in each level).

The idea of performing operations on levels is not strange
to fuzzy sets. It is well known that union and intersec-
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tion performed via maximum and minimum, respectively,
are equivalent to performing the union and intersection of
the α-cuts in each level independently. This can be seen in
Table II, where horizontal representations of fuzzy sets for
concepts A, B, and A ∧B yield the same results obtained in
Table I. However, the introduction of complement is radically
different, as it breaks the ordinary nested relation between
levels. This affects the results of operations, as it is evident
when comparing both tables. It can also be observed in Table
II how in this particular case properties such as the excluded
middle are lost.

For those familiar with fuzzy sets, the RL resulting from
the complement of a fuzzy set seems strange. How is it
possible that, as you are less strict (lower levels), you have
less elements? However, there is a rationale behind that: if at
a certain level an object can be accepted as fulfiling A, then
the object cannot be accepted as fulfiling ¬A in that same
level. Is the focus in the levels that changes the perspective.
Note also that an object can appear in the representation of
both A and ¬A, as in the case of fuzzy sets, but always in
different levels.

C. A view of fuzzy sets from the Theory of RLs
In the theory of RLs it is common to measure the degree

of fulfilment of properties as probability measures defined on
the set of levels (0, 1], making use of Eq. (3). For instance,
a degree of equality or inclusion between two RL-sets can be
defined as the probability that in a level taken at random, both
sets are equal or one of them is included in the other. As an
example, in Table I, the probability that the RL-set for B is
a subset of the RL-set for A is 0.5, since the inclusion only
holds in the interval of levels (0.5, 1]. It is easy to see that the
degree of equality is 0.2, as this holds in the interval of levels
(0.7, 0.9]2.

One remarkable property that can be measured in this way
is the fulfilment of the property by a certain element of X .
This provides us with a degree of membership of an object to
an RL-set. When this measure is applied to every element of
X for an RL ρA, the result can then be interpreted as a fuzzy
set νA. Remarkably, since the set of crisp representatives in
an RL is finite:

• If the levels of a RL-set ρA are the α-cuts of a fuzzy
set µA with a finite set of membership values, then
νA = µA. This reflect the ordinary one-to-one relation
between fuzzy sets and their collection of α-cuts, in this
case restricted to sets with a finite set of degrees ΛA.

• In general it is possible to have others (even an infinite
number of) RLs providing the same function ν.

As an example, the function νA∧¬B for the corresponding RL-
set in Table I is

νA∧¬B = 0.1/x1 + 0.7/x2 + 0.1/x5.

Note that the α-cuts of νA∧¬B do not match the RL for
A ∧ ¬B, so we cannot use it for further operations following

2Gradual sets with an infinite amount of representatives require Lebesgue
integration in general, as pointed out in [1].

TABLE III
TABLE

α ρe(α) ρ|A|(α) ρ|B|(α) ρ|A|+|B|(α)
1 x1 1 0 1

0.9 x1 1 1 2
0.7 x2 2 1 3
0.5 x1 2 2 4
0.3 x3 3 3 6
0.1 x2 4 3 7

the RL philosophy. But this fuzzy set can serve as a summary
of information about the membership of objects to an RL-
set, complementing the information given by the RL-set itself
about the output of the operations so far. For users, specially
in the fuzzy community, this information can help in under-
standing what’s going on. We’ll come back to this point in
Section IV.

III. GRADUALITY IN ELEMENTS

One interesting feature of Eq. (2) is that we can change 2X

by any other set3. That is, we can consider graduality not only
in subsets of a certain set X , but in elements of other sets.
This is something that Eq. (1) cannot provide: fuzzy sets are
always sets, with the particular feature of being affected by
graduality.

The idea of Gradual Element was on the basis of the
approach of Gradual Sets [1]. The column for ρe in Table
III shows an example of gradual element taken from X (that
is, ρe : (0, 1] → X). Again, the corresponding concept in
the theory of RLs (RL-element) is similar, but limited to
a finite set of crisp representatives (elements of X in this
case). One particular property we can measure is membership.
The membership of ρe to the RL-set for A in Table I is 1,
since ρe(α) ∈ ρA(α) ∀α ∈ (0, 1]. It is easy to see that its
membership to the RL-set for B is 0.6.

One particularly useful case of RL-element arises when they
are defined on numbers [1], [9], [3]. This allows for instance
to apply measuring to RL-sets, as in columns ρ|A| and ρ|B| in
Table III, where the cardinality of the corresponding RL-sets in
Table I is computed for each level. The last column in the table
serves to show how the operations are performed by levels
independently, the addition in this case. As in the crisp case,
the operations of subtraction and division can be performed by
considering RL-elements of the integers and rational numbers,
real and complex when necessary, etc.

Note that RL-numbers, and Gradual Numbers in general,
are gradual but not imprecise, to the extent that operations
between gradual numbers may yield a crisp number (think for
instance of ρ|A|+|¬A|, which is the crisp number 5 for A in
Table I. On the contrary, the so-called fuzzy numbers are in
fact fuzzy subsets of numbers, more properly fuzzy intervals,
with imprecision increasing with operations.

3A study about the view of Gradual Sets defined on X as Gradual Elements
of 2X can be found in [8].



66

As a final remark, as was the case of sets, RL-numbers of
every kind also keep the same algebraic structure as their crisp
counterparts.

IV. THE SYMBIOSIS: RL-SYSTEMS

RL-systems provide an approach for solving problems in-
volving graduality. The approach implies the use of both Fuzzy
Sets and RLs. The ideas behind RL-systems are:

• Fuzzy Sets are employed as input. We consider that
graduality comes fundamentally for graded concepts born
in the human brain. Fuzzy Sets have proved to be an
intuitive tool for representing such concepts, with many
resources for elucidating membership functions.

• A finite amount of levels is considered. The particular
levels may vary depending on the application at hand,
representing the amount of levels we are able to distin-
guish (or less levels if they are enough for solving the
problem).

• The fuzzy input is transformed into RLs by computing
the α-cuts with the levels considered.

• Operations are performed in each level independently,
including set operations, measuring and calculations with
the obtained numbers.

• The output is provided as the resulting RL together with
its corresponding fuzzy set ν in order to enhance the
information provided to the user.

As an example, in [10], [11] these ideas are employed
in order to perform flexible queries like Find the students
with high marks in a relational database, using trapezoidal
Fuzzy Sets for representing flexible restrictions like high in
the previous query. Contrary to purely fuzzy solutions, all
the properties of crisp queries are preserved, particularly the
equivalence between different formulations.

Other applications in the literature include Data mining [12],
[4] (see a review in [13]) and generalized quantification [14],
among many others.

The RL-system approach is a good choice when at least one
of the following hold:

• The solution is clear in the crisp case but it is not very
clear how to extend it to the fuzzy case. In this case,
the solution provided by RL-systems is to solve the crisp
problem in each level directly.

• The problem to be solved involves working with math-
ematical objects other than sets, particularly numbers to
be obtained by measurement.

• It is mandatory to keep properties of the crisp case that
fuzzy approaches cannot provide.

V. CONCLUSIONS

We conceive the theory of RLs as another alternative to
Fuzzy Set Theory for the same purposes: representing and
managing graduality in real applications. The contributions of
RLs are diverse: direct translation from the crisp to the gradual
case, maintaining all the properties of the crisp case, and
allowing to represent graduality beyond sets. The applications
developed so far show the feasibility of the approach.

There are many research opportunities in this area. During
the last 60 years, Fuzzy Sets have been applied in many fields,
both from a mathematical/theoretical perspective and a more
practical view. The use of RLs is worth exploring in those
cases we have pointed out in the previous section. And RL-
systems allow us to take benefit of the understandability of
such a well-known representation tool as Fuzzy Sets are.

RLs also have their drawbacks, as we need to represent and
to compute in different levels. Indexing and parallelizing can
help with these aspects, as it has been also shown in practical
applications.

And finally, no theory is better than the other in general.
Both are useful and have an infinite research area to explore,
and this is the path we will follow in the future.

ACKNOWLEDGMENT

This publication is part of the Grant PID2021-126363NB-
I00 funded by MICIU/AEI/10.13039/501100011033 and by
“ERDF A way of making Europe”.

REFERENCES

[1] D. Dubois and H. Prade, “Gradual elements in a fuzzy set,” Soft
Computing, vol. 12, pp. 165–175, 2008.

[2] D. Sánchez, M. Delgado, and M. Vila, “A restriction level approach
to the representation of imprecise properties,” in Proceedings Int.
Conference on Information Processing and Management of Uncertainty
IPMU’08, 2008, pp. 153–159.

[3] D. Sánchez, M. Delgado, M. Vila, and J. Chamorro-Martı́nez, “On a non-
nested level-based representation of fuzziness,” Fuzzy Sets and Systems,
vol. 192, no. 1, pp. 159–175, 2012.

[4] T. P. Martin and B. Azvine, “The X-mu approach: Fuzzy quantities,
fuzzy arithmetic and fuzzy association rules,” in IEEE Symposium
on Foundations of Computational Intelligence, FOCI 2013, Singapore,
Singapore, April 16-19, 2013. IEEE, 2013, pp. 24–29.

[5] D. J. Lewis and T. P. Martin, “The X-µ approach: In theory and
practice,” in Information Processing and Management of Uncertainty
in Knowledge-Based Systems - 15th International Conference, IPMU
2014, Montpellier, France, July 15-19, 2014, Proceedings, Part III, ser.
Communications in Computer and Information Science, A. Laurent,
O. Strauss, B. Bouchon-Meunier, and R. R. Yager, Eds., vol. 444.
Springer, 2014, pp. 406–415.

[6] T. P. Martin, “The X-mu representation of fuzzy sets,” Soft Comput.,
vol. 19, no. 6, pp. 1497–1509, 2015.

[7] P. Jara, L. Merino, G. Navarro, and E. Santos, “On gradual sets, hesitant
fuzzy sets, and representation theorems,” IEEE Access, vol. 12, pp.
111 158–111 168, 2024.

[8] J. M. Garcı́a and P. Jara, “Gradual sets: An approach to fuzzy sets,”
Adv. Fuzzy Syst., vol. 2023, pp. 6 163 672:1–6 163 672:18, 2023.

[9] D. Sánchez, M. Delgado, and M. Vila, “RL-numbers: An alternative to
fuzzy numbers for the representation of imprecise quantities,” in FUZZ-
IEEE 2008, Proceedings. IEEE, 2008, pp. 2058–2065.
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Abstract—In this short paper, we discuss some thoughts about
the past, present, and future of the research in the combination
of fuzzy logic and Semantic Web technologies. We envision that
this combination will be particularly fruitful in the context
of Neurosymbolic Artificial Intelligence and point out some
lessons already learnt that should be taken into account in the
development of future technologies.
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I. INTRODUCTION

Since its birth in 1965, fuzzy logic has proven useful in
many practical applications, from real-world problem solving
(e.g., automatic control of industrial plants or conventional
household appliances) to building generalisations of multiple
areas within computer science, giving rise to fuzzy databases,
fuzzy neural networks, fuzzy clustering, etc.

Nowadays, Semantic Web technologies have become a
fundamental cornerstone of Knowledge Representation and
Reasoning (KRR), one of the branches of Artificial Intelli-
gence (AI), being a de facto standard to represent the relevant
knowledge in any application domain. The objective of this
short article is to highlight the impact (past, present, and fu-
ture) of fuzzy logic in the field of Semantic Web technologies.

The remaining of this paper is organised as follows. After a
brief background on Semantic Web technologies (Section II),
we will discuss the role of fuzzy Semantic Web technologies in
(Neurosymbolic) Artificial Intelligence (Section III) and point
out several important lessons learnt that will be relevant in the
future (Section IV).

II. SEMANTIC WEB TECHNOLOGIES

Many modern approaches to represent knowledge were
developed by the Semantic Web (SW) community, so they are
often called Semantic Web (or semantic) technologies, even if
they can be used beyond the web. Such technologies include
ontologies and Knowledge Graphs (KGs).

• Ontologies are agreed schemas defining a common vo-
cabulary (classes, relationships and axioms that must hold
to keep the semantics of the knowledge). Ontologies are
specified using a formal (logical-based) language.

This work was partially supported by the I+D+i projects PID-
2020-113903RB-I00 (funded by MCIN/AEI/10.13039/501100011033) and
T42 23R (Gobierno de Aragón).

• Ontology languages are typically based on Description
Logics (DLs), a family of logics to represent structured
knowledge with a very good trade-off between expressiv-
ity and computational complexity.

• KGs (such as Wikidata) are graph models used to repre-
sent data in terms of entities (nodes) and binary relations
between them (edges). Typically, a KG is implemented as
a set of triples, each of them linking an entity object with
another entity or a literal value via a property. Usually, the
classes and properties used in a KG are formally defined
in an ontology.

However, since these technologies are not suitable enough to
manage imprecision, as required by many – if not most – real-
world domains, different fuzzy generalisations have been pro-
posed, such as fuzzy ontologies [1], based on fuzzy Descriptive
Logics [2], fuzzy knowledge graphs [3], etc. For example, in
fuzzy ontologies, one can have fuzzy classes (defined using
fuzzy sets), fuzzy properties (defined using fuzzy relations),
fuzzy datatypes (defined using fuzzy membership functions),
fuzzy axioms (with a partial degree of truth), and new methods
to build complex classes (e.g., apart from the well-known
Boolean connectors, it is possible to use an OWA aggregation).

III. NEUROSYMBOLIC ARTIFICIAL INTELLIGENCE

While Semantic Web technologies are examples of sym-
bolic AI, in recent years, we have witnessed a significant
rise in subsymbolic AI. Thanks to the advances in machine
learning, deep learning and Large Language Models (LLMs)
have achieved remarkable results, but they still have several
limitations. In this context, neurosymbolic AI [4] has been
proposed, combining the advantages of both symbolic and
subsymbolic AI. For example, Semantic Web technologies
could be used to improve LLMs in different ways [5]:

• Ontologies can be used to detect logical contradictions
between the background knowledge and the knowledge
generated by the LLM, by solving a consistency test.

• LLMs are black-box models that often cannot explain
how their conclusions were derived, but ontologies can
improve the explainability by using logical reasoning to
justify their inferences.

• Using knowledge injection, LLMs can take advantage of
the information stored in a knowledge graph.
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In these new hybrid models, it makes a lot of sense to
incorporate fuzzy logic as well, to manage imprecision and
vagueness. For example:

• In some cases, the law of excluded middle does not hold:
knowing both a piece of information and its negation
does not necessarily mean a logical contradiction. Such
behaviour can be modelled with fuzzy DLs.

• Fuzzy logic is very useful to build explainable intelligent
systems, as linguistic labels are very good for summaris-
ing information.

• Knowledge injection might include linguistic variables
and fuzzy rules, which appear in some existing knowl-
edge bases.

Years ago, most of the attention in the field of Semantic
Web technologies was dedicated to ontologies. Nowadays,
knowledge-based graphs are probably more popular. For sure,
in the future, new semantic technologies will emerge, and new
fuzzy extensions of them will be convenient. Therefore, it is
important not to forget what we have already learnt when
building such future fuzzy technologies.

IV. SOME LESSONS LEARNT

Fuzzy logic vs. crisp logic: We do not need a fuzzy version
of everything: we should not fall into the temptation of
fuzzifying each new technology for its own sake. Instead, we
should be guided by real-world applications: whenever we deal
with real-world knowledge, it is quite likely that the need (or
convenience) of using fuzzy logic to manage the vagueness
inherent in natural language will naturally emerge.

Fuzzy logic in wide sense vs. fuzzy logic in a narrow sense:
Lotfi A. Zadeh distinguished between fuzzy logic in a narrow
sense (understood as a logical system) and fuzzy logic in a
wide or broad sense (with a more general meaning, as the
theory of fuzzy sets). Both are important and deserve attention,
as each has its own applications. In the case of Semantic
Web technologies, both the study of the complexity of fuzzy
DLs [2], [6] and the development of languages to encode fuzzy
ontologies [7] have been important.

Fuzzy logic vs fuzzy logics: We frequently use the term
“fuzzy logic” in singular, but sometimes we should better use
it in plural. While in the classical case there is, for example, a
unique DL called ALC, in the fuzzy case there are several
fuzzy extensions, as there are several degrees of freedom:
different fuzzy operators can be used to define the semantics
of the logic, the syntax of the axioms can be extended to the
fuzzy case or not, etc.

Clearly, the choice of fuzzy operators is significant. Gödel
ALC and Łukasiewicz ALC, defined from the minimum t-
norm and the Łukasiewicz t-norm, respectively, have different
logical properties. In fact, while with some fuzzy operators the
complexity of a DL does not increase, other fuzzy operators
make the logic undecidable [6]. Furthermore, while in the
classical case ALC and ALCU DLs are equivalent, since
union can be defined from negation and conjunction, in the
fuzzy case this is not always the case [2].

Fuzzy extension vs. fuzzy creation: It is always possible to
propose a new language to represent or query fuzzy knowl-
edge. However, in many cases, it could be preferable to reuse
existing standard languages in order to promote user adoption
of the novel technology. This can be achieved by building a
fuzzy layer on top of the standard language. Furthermore, even
if the user has a classical knowledge base (e.g., an ontology or
a knowledge graph), it is also possible to solve flexible queries
(including imprecise terms) over it, so that the representation
language remains the standard one and only the mechanism
to query the knowledge base needs to be modified [3], [8].

Similarly, to address the reasoning, we can develop new
algorithms or reduce the problem to already known algorithms.
On the one hand, fuzzy DL reasoning can sometimes be
reduced to classical reasoning, avoiding the need to develop
a dedicated reasoner at the cost of increasing the size of
the knowledge base [8]. On the other hand, the development
of new algorithms avoids such an increase but requires new
implementations. For example, the fuzzyDL reasoner was
built completely from scratch [9]. New algorithms include
extensions of existing ones (e.g., fuzzy extensions of the
classical tableaux algorithms [10]) as well as novel solutions
(e.g., combinations of tableaux and linear programming [11]).
Existing families of reasoning algorithms for fuzzy DLs sup-
port different languages and have different properties. Again,
applications will guide the user in choosing the most appro-
priate family and its software implementation.
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Abstract—Fuzzy sets and systems can be used in intelligent
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I. INTRODUCTION

This year marks the 60th anniversary of fuzzy sets [1].

According to the author’s preliminary survey, Zadeh’s 1965

“Fuzzy Sets” paper [1] is the 5th most cited machine learn-

ing paper on Google Scholar, after four classic papers that

proposed residual network (ResNet) [2], Adam optimizer [3],

attention mechanism [4], and AlexNet [5]. Notably, the “Fuzzy

Sets” paper is the only single-authored paper among the top

5.

My main research interests include fuzzy logic, brain-

computer interface, and machine learning. Next, I’ll briefly

introduce some of our recent works on fuzzy logic, and

potential new directions.

II. FUZZY SYSTEMS FOR MACHINE LEARNING

Recently, we identified the functional equiva-

lences/similarities between TSK fuzzy systems and several

classic machine learning models [6], including neural

networks, mixture-of-experts, classification and regression

tree (CART), and stacking ensemble learning. Based on

these equivalences/similarities, we extended/adapted some

effective techniques, e.g., mini-batch gradient descent, batch

normalization, dropOut, ReLU, and Adam, from the training

of (deep) neural networks to the training of TSK fuzzy

systems [7]–[11], and achieved promising performance.

Particularly, they enhanced TSK fuzzy systems’ capability to

handle big data and high-dimensional features.

More novel architectures and training algorithms for deep

neural networks may also be extended/adapted to the training

of fuzzy systems, e.g.,

1) ResNet [2]. The most distinguishing innovation of

ResNet is the skip-layer connection, enabling the con-

struction and training of very deep neural networks.

Whereas skip-layer connections were first proposed for

neural networks in 2016, similar idea existed in TSK

fuzzy systems since their born: In the popular adaptive-

network-based fuzzy inference system (ANFIS) [12]

shown in Fig. 1, the inputs (x1, x2, ..., xd) enter the

first layer, and also the 4th layer directly (i.e., they skip

the 2nd and 3rd layers). The numerous new architecture

variants and/or training algorithms for ResNet may have

their counterparts for TSK fuzzy systems, which remain

to be explored.

Fig. 1. The 5-laye ANFIS representation of a TSK fuzzy system.

2) Attention [4]. The attention mechanism has demon-

strated promising performance in deep learning when

dealing with computer vision and natural language pro-

cessing tasks. It includes three main components: a

query Q, a key K , and a value V , which are combined

using the following equation:

Z = softmax

(

QK⊤
√

d

)

V, (1)

where d is the feature dimensionality.

For a TSK fuzzy system, we can view the pro-

cess for computing the firing levels of the rules as

softmax
(

QK⊤

√
d

)

, and the rule consequents as V ; thus,

a TSK fuzzy system actually uses the attention mech-

anism. The numerous new architecture variants and/or

training algorithms for attention in neural networks may
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have their counterparts for TSK fuzzy systems, which

also remain to be explored.

III. FUZZY SETS FOR BRAIN-COMPUTER INTERFACES

A brain-computer interface (BCI) is a direct communication

pathway between a user’s brain and an external device, which

can be used to map, assist, augment, or repair the cognitive

and/or sensory-motor functions of the brain [13]. Due to its

convenience and low cost, electroencephalogram (EEG) is the

most popular input for non-invasive BCIs.

A major challenge in EEGb-based BCIs is to accommodate

individual differences, or inter-subject variability [14], and

hence to expedite the calibration for a new user. Transfer learn-

ing [15], which uses data/knowledge from auxiliary (source)

subjects to facilitate the learning for a new subject, has been

extensively used in BCI calibration.

There are currently numerous algorithms for classification

problems in EEG-based BCIs, but not for regression prob-

lems. To avoid the burden of developing algorithms for BCI

regression problems from the scratch, we have proposed some

fuzzy set based approaches to extend classic signal process and

machine learning algorithms from classification to regression,

and demonstrated promising performance [16], [17]. The basic

idea is to use fuzzy sets to construct fuzzy classes, so that

class conditional calculations can be performed for regression

problems.

The above idea is particularly promising for extending

transfer learning algorithms from classification to regression,

as the former depend heavily on aligning the class condi-

tional probabilities between the source subjects and the target

subject. We believe lots of interesting new results could be

developed.

IV. CONCLUSIONS

This short article briefly reviews some of our recent works

on fuzzy systems for machine learning, and fuzzy sets for

brain-computer interfaces. It also points out some potential

new research directions.
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Abstract—At the time we celebrate 60 years since fuzzy logic,
we are also faced with one of the pressing challenges of our
time: how artificial intelligence evolves not as a replacement for
human beings but as a friendly partner. At a time of increasing
automation, algorithms, and efficient systems, we ask: what kind
of intelligence do we need? We postulate that Fuzzy Logic is what
AI systems require to behave more like assistants, collaborators,
or colleagues rather than machines.

Index Terms—Fuzzy Sets and Systems, Artificial Intelligence,
Nuance Intelligence

I. INTRODUCTION

Fuzzy Sets and Systems – Happy 60th Birthday! It is almost
nothing in terms of a celestial body but quite a bit in the
scale of a human. However, in the case of an idea, theory, or
mathematical concept, it may be the right time to discover its
ultimate purpose, the time to reveal its influence.

Examining the brief history of fuzzy sets and systems
reveals their tremendous success. As a very new concept, it
has generated a lot of interest in both theoretical and applied
areas. The development of fuzzy control, possibility theory,
aggregation operators, and fuzzy expert systems are just a few
examples of the most recognizable achievements.

At 60, fuzzy sets and systems have witnessed an enormous
and successful development of AI-related technologies – from
deep neural networks in pattern recognition to large foundation
models in the areas of natural language and image processing.
Yet, human interaction with machines is problematic and intri-
cate. The current AI systems, having impressive capabilities,
struggle with fundamental limitations. Large language models
produce overconfident predictions without measures of uncer-
tainty. Neural networks operate as black boxes, lacking ex-
planations when regulations and ethics mandate transparency.
Binary decision-making systems fail to capture the nuanced
reasoning that characterizes human intelligence.

II. OPPORTUNITY

The original concept of fuzzy sets and systems, as envi-
sioned by Lotfi A. Zadeh [1]–[3], aimed to address the issue
of interaction between humans, who are inherently imprecise

and vague entities, and computers, which are precise and well-
defined. It appears that there is an opportunity to address 
challenges facing modern AI, i.e., uncertainty quantification, 
interpretability issues, and the need for human-aligned 
reasoning. That all aligns perfectly with the solutions fuzzy 
logic has to offer. As AI looks beyond deterministic out-puts 
toward context-aware, explainable, and ethical systems, 
fuzzy logic becomes fundamental not as a competitor to neural 
methods but as a complementary reasoning layer.

In various fields, including healthcare, education, person-
alized AI assistants, and autonomous decision-making, we 
require systems that not only process data but also weigh 
conflicting, incomplete, and qualitative inputs just as people 
do. Fuzzy systems can enable AI to act in ways aligned with 
human expectations, allowing it to tolerate ambiguity. In this 
case, fuzzy logic becomes a vital component. It will enable 
AI systems to behave more like assistants, collaborators, or 
colleagues rather than machines.

III. NUANCE INTELLIGENCE

This interaction of AI and Fuzzy Logic leads to

Nuance Intelligence – systems capable of
subtle reasoning, contextual adaptation, and
human-like understanding.

Unlike traditional AI, which prioritizes precision, Nuance
Intelligence focuses on ambiguity, degrees of truth, and fuzzy
boundaries. These are aspects that humans are familiar with
and care about. It is not about automation or replacements but
about building systems that collaborate, explain, and work for
humans using human measures and criteria.

Consider a medical diagnosis system powered by Nuance
Intelligence:

Traditional AI: Patient has 87% probability of condition X
Nuance Intelligence: Patient shows moderate symptoms

(0.7 confidence) with borderline test results (0.6 confidence),
suggesting condition X with qualified certainty. Age factor is
somewhat elevated (0.8), while lifestyle factors are moderately
protective (0.5).
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The fuzzy-based approach not only provides a decision but
explains the reasoning process, communicates uncertainty lev-
els, and offers insight into contributing factors, all in human-
understandable terms. Additionally, Nuance Intelligence ad-
dresses the need for explainability. Systems built with such
intelligence have explainability built into their core architec-
ture. The linguistic variables and fuzzy rule-based structures
provide natural explanations. When a system indicates that the
temperature is moderately high, humans understand both the
measurement and its implications.

IV. CONCLUSION

All this is fuzzy reasoning at work: capturing and
expressing degrees of belief, possibility, relevance, or safety.

Nuance Intelligence – Fuzzy by Design:
With Us. For Us. Never instead of Us.

Happy Birthday, Fuzzy Sets and Systems!

Wishing you to become easily recognizable,
widely adopted and justly successful
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Abstract—Research on operators in finite chains has been a
field of constant study in the framework of fuzzy logic. Therefore,
in this short paper, we want to show the importance of this active
field of research, some lines of investigation that have arisen, as
well as new challenges that remain to be done.

Index Terms—Discrete fuzzy numbers, finite chains, admissible
order, qualitative reasoning, t-norms, aggregation operators,
cardinality.

I. INTRODUCTION

In today’s world, where information is often presented in
a massive, imprecise, and distorted manner, it is particularly
important to have tools that facilitate its understanding and
processing. Fuzzy logic [1] provides an appropriate framework
for this purpose. Although the unit interval has traditionally
been used as the standard domain for modeling and defining
operators, when dealing with ordinal or qualitative information
[2], [3], more suitable structures are required, such as the
finite chain Ln = {0, 1, . . . , n}, which models a totally
ordered set of n + 1 elements. The foundation for modeling
qualitative information on finite chains and defining operators

The authors are supported by the project PID2020-113870GB-I00- “Desar-
rollo de herramientas de Soft Computing para la Ayuda al Diagnóstico Clı́nico
y a la Gestión de Emergencias (HESOCODICE)” funded by MICIU/AEI
/10.13039/501100011033/.

within this framework was established by Godo and Sierra [4].
In earlier work [5], linguistic terms like Impossible, Almost
possible, and Sure were modeled using fuzzy sets over the
unit interval. However, two main drawbacks were identified:
the difficulty experts face in translating linguistic labels into
precise membership functions, and the inconsistency in rep-
resentations provided by different experts. To address these
issues, the authors proposed modeling labels directly using a
finite chain E = {E0, E1, . . . , En} equipped with a total order
⪯, and redefined classical fuzzy operators—such as negations,
t-norms, and t-conorms—to operate on this structure. It was
later recognized that E could be naturally represented using
Ln, allowing direct mapping of linguistic scales like the one
in [5] (impossible, almost impossible, slightly possible, ...,
almost sure, sure) onto L8.

In this framework, significant progress has been made in
three main areas:

i) theoretical study of operators on Ln [3], [6]–[14],
ii) their enumeration [10], [15]–[21],

iii) and their application to decision making, consensus, and
image processing [2], [22]–[24]

The elements of a finite chain, interpreted as linguistic ex-
pressions of an expert, can result in very rigid evaluations in a
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decision-making problem. For this reason, the set of discrete
fuzzy numbers with values in a finite chain Ln, denoted by
ALn

1 [22], offers a more flexible framework for qualitative
reasoning. In this environment, different lines of research have
been put forward:

• Linguistic models based on finite chains ( [25], [26]),
• Theoretical investigation base on operators defined on Ln

[22], [27] (t-norms, t-conorms, uninorms, implications,...)
• Applications.

The remainder of this paper is organized as follows. In
Section II, we introduce the finite chain Ln and review the
main classes of operators defined on it. Section III presents
the formal definition of discrete fuzzy numbers over Ln and
some basic concepts on this framework. Finally, in Section IV,
we outline open questions and future research directions about
these topics.

II. OPERATORS ON THE FINITE CHAIN Ln

In the realm of qualitative information processing, the finite
chain Ln = {0, 1, . . . , n} serves as a fundamental structure for
modeling ordinal and linguistic information. While classical
fuzzy logic typically operates on the unit interval [0, 1], many
real-world applications—particularly those involving human
perception or expert knowledge—require reasoning over dis-
crete, ordered domains. In this context, the definition and
study of suitable operators on Ln become essential to perform
logical and computational tasks such as negation, conjunction,
disjunction, and aggregation.

Let us consider Ln = {0, 1, . . . , n}, where n ∈ N. The
elements of Ln are interpreted as qualitative labels that can
represent degrees of truth, confidence, preference, or any other
kind of ordered linguistic term. Since Ln is totally ordered, it
provides a natural environment for defining discrete analogs
of fuzzy logic operators.

The most commonly studied classes of operators on Ln

include:
• Fuzzy negations: Functions N : Ln → Ln that reverse

the order of truth values.
• Triangular norms (t-norms): Functions T : Ln×Ln → Ln

that generalize the logical conjunction.
• Triangular conorms (t-conorms): Functions S : Ln ×

Ln → Ln that generalize the logical disjunction.
• Aggregation functions: Functions A : Lk

n → Ln that
combine multiple inputs into a single output, preserving
monotonicity.

• Implication functions: Functions I : Ln × Ln → Ln that
generalizes the notion of crisp implication from classical
logic to the finite chain Ln = {0, 1, . . . , n}.

All these operators must satisfy certain axioms adapted from
their continuous counterparts, while respecting the discrete
nature of Ln.

III. DISCRETE FUZZY NUMBERS AND ADMISSIBLE
ORDERS

Building upon the structure of the finite chain Ln =
{0, 1, . . . , n} and the operators defined on it, we now intro-

duce discrete fuzzy numbers (DFNs), which provide a formal
framework for modeling qualitative and imprecise information
in decision-making contexts.

A discrete fuzzy number (DFN) is a fuzzy set A : R → [0, 1]
with finite support supp(A) = {x1, x2, . . . , xk} ⊂ Ln, where
x1 < x2 < · · · < xk, and membership degrees satisfying the
following properties (see Voxman, 2001 [28]):

1) There exist indices s ≤ t such that A(xi) = 1 for all
i ∈ {s, . . . , t}. This set is called the core of A.

2) The membership function increases up to the core:
A(xi) ≤ A(xj) for all i ≤ j ≤ s.

3) The membership function decreases after the core:
A(xi) ≥ A(xj) for all t ≤ i ≤ j.

We denote by DLn the set of all DFNs whose support
lies within Ln, and by ALn

1 ⊆ DLn the subset of DFNs
whose support forms a closed subinterval of Ln, i.e., of the
form [i, j] with i, j ∈ Ln and i ≤ j. This subclass plays a
key role in modeling linguistic expressions in decision-making
problems [25].

Given a DFN A ∈ ALn
1 , its α-cut at level α ∈ (0, 1] is

defined as:
Aα = {x ∈ Ln | A(x) ≥ α}.

The α-cuts are intervals in Ln, and they are used to compare
DFNs through their structural components.

To allow for more structured and interpretable representa-
tions, especially in computational models, we consider DFNs
whose membership values are restricted to a finite scale
Ym = {y1 = 0, y2, . . . , ym = 1}, where 0 = y1 < y2 < · · · <
ym−1 < ym = 1. We denote by ALn×Ym

1 the set of DFNs over
Ln whose membership values belong to Ym. This restriction
enhances the usability of DFNs in real-world applications
where experts express their opinions using a predefined finite
linguistic scale. An important property of this class is that
it contains only a finite number of elements. Specifically, as
shown in Mir-Fuentes et al. [26], the total number of such
DFNs is given by:

∣

∣

∣
ALn×Ym

1

∣

∣

∣
=

(

n+ 2m− 2

2m− 2

)

.

This result follows from modeling each DFN as a pair con-
sisting of a support interval [i, j] ⊆ Ln and a membership pro-
file over that interval, which must satisfy increasing-decreasing
behavior with respect to the Ym-valued membership degrees.

This finiteness allows us to treat ALn×Ym
1 as a finite chain,

which is essential for defining computable operations and
orders.

IV. OPEN QUESTIONS AND FUTURE WORK

This section sets out some possible lines of research.

A. Finite Chains

• To study the cardinality of discrete implication functions
satisfying certain properties (Exchange Principle, the law
of importation, with respect to a discrete t-norm T , etc.)
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• Investigate the cardinality of discrete conjunctions, dis-
junctions, and implications, focusing on those that are
smooth, including an asymptotic analysis.

B. Discrete fuzzy numbers defined on a finite chain

• Generalization of operators in the set ALn×Ym
1 based on

operators defined on the finite chain Ln.
• Because the cardinality of ALn×Ym

1 increases very
rapidly, efficient algorithms are required to generalize the
operators discussed in the previous point.

• Develop new linguistic models based on discrete fuzzy
numbers to enable the accurate representation of expert
opinions. For instance, the linguistic model based on Z-
numbers [29] (this model provides a more appropriate
framework for capturing both the fuzziness and reliability
of expert knowledge).
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